Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào 10 năm 2022 - 2023 phòng GDĐT Triệu Sơn - Thanh Hóa

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Triệu Sơn, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 21 tháng 04 năm 2022. Trích dẫn đề thi thử Toán vào 10 năm 2022 – 2023 phòng GD&ĐT Triệu Sơn – Thanh Hóa : + Cho phương trình: x2 + (2m + 1)x + m2 – 1 = 0 (1) (với x là ẩn số). Tìm m để phương trình (1) có hai nghiệm phân biệt x1 và x2 thỏa mãn: (x1 − x2)2 = x1 – 5×2. + Từ một điểm A nằm ngoài đường tròn (O; R) ta vẽ hai tiếp tuyến AB, AC với đường tròn (B, C là tiếp điểm). Trên cung nhỏ BC lấy một điểm M; gọi I, K lần lượt là hình chiếu vuông góc của M trên đường thẳng AB và AC. 1. Chứng minh: AIMK là tứ giác nội tiếp đường tròn. 2. Vẽ MP vuông góc BC (P thuộc BC). Chứng minh: MPK = MBC. 3. Xác định vị trí của điểm M trên cung nhỏ BC để tích MI.MK.MP đạt giá trị lớn nhất. + Cho a là số thực dương. Tìm giá trị nhỏ nhất của biểu thức T.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử Toán vào lớp 10 lần 2 năm 2021 trường chuyên Đại học Sư phạm Hà Nội
Đề thi thử Toán vào lớp 10 lần 2 năm 2021 trường chuyên Đại học Sư phạm Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút. Trích dẫn đề thi thử Toán vào lớp 10 lần 2 năm 2021 trường chuyên Đại học Sư phạm Hà Nội : + Một nhà máy theo kế hoạch phải sản xuất 20000 hộp khẩu trang trong thời gian quy định (số hộp khẩu trang nhà máy sản xuất được trong mỗi ngày là bằng nhau). Để đẩy nhanh tiến độ trong công cuộc phòng chống đại dịch COVID- 19, mỗi ngày nhà máy đã sản xuất nhiều hơn kế hoạch 100 hộp khẩu trang. Do đó, nhà máy đã hoàn thành công việc trước thời hạn 10 ngày. Hỏi theo kế hoạch, mỗi ngày nhà máy phải sản xuất bao nhiêu hộp khẩu trang? + Cho phương trình x2 + (1 – m)x – 2m – 4 = 0 với m là tham số. 1) Chứng minh rằng phương trình luôn có hai nghiệm phân biệt x1, x2 với mọi giá trị của tham số m. Tính giá trị của biểu thức T = (x1 + 2)(x2 + 2). + Cho đường tròn tâm O có hai đường kính AB và CD vuông góc với nhau. Gọi M là điểm tùy ý trên cung nhỏ AC (M không trùng với A và C). Tia DM cắt các đường thẳng AB, AC và BC lần lượt tại N, P và Q. Gọi H là hình chiếu của điểm C trên đường thẳng AQ. 1) Chứng minh rằng tứ giác AOCH nội tiếp và tia HO là tia phân giác của AHC. 2) Chứng minh PA/PC = HA/HC. 3) Chứng minh.
Đề thi thử Toán vào lớp 10 lần 2 năm 2021 - 2022 trường Thái Thịnh - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi thử Toán vào lớp 10 lần 2 năm học 2021 – 2022 trường THCS Thái Thịnh, quận Đống Đa, thành phố Hà Nội; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi thử Toán vào lớp 10 lần 2 năm 2021 – 2022 trường Thái Thịnh – Hà Nội : + Một lon nước ngọt hình trụ có đường kính đáy bằng 6cm, chiều cao 10cm. Tính thể tích của lon nước. (Bỏ qua bề dày của lon nước). + Trong mặt phẳng tọa độ Oxy cho đường thẳng (d): y 3x m 1 và parabol (P): 2 y x. a) Tìm tọa độ giao điểm của (d) và (P) khi m = 3. b) Tìm tất cả các giá trị của m để (d) cắt (P) tại hai điểm có hoành độ x1, x2 thỏa mãn 1 2 x 3x. + Cho đường tròn (O;R) và dây BC cố định. Trên tia đối của tia BC lấy điểm A. Kẻ các tiếp tuyến AM, AN với đường tròn (O) (M và N là các tiếp điểm, N thuộc cung BC nhỏ). Gọi H là trung điểm của dây BC. 1) Chứng minh bốn điểm A, M, O, H cùng thuộc một đường tròn. 2) MN cắt OA tại điểm I. Chứng minh rằng AI.AO = AM2. 3) Tia MH cắt đường tròn (O) tại điểm thứ hai D. Giả sử 3 điểm A, B, C cố định, đường tròn (O) đi động. Chứng minh ND//AC và đường thẳng MN luôn đi qua một điểm cố định.
Đề thi thử Toán vào lớp 10 năm 2021 - 2022 lần 3 trường Nguyễn Công Trứ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi thử Toán vào lớp 10 năm học 2021 – 2022 lần 3 trường THCS Nguyễn Công Trứ, quận Ba Đình, thành phố Hà Nội; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi thử Toán vào lớp 10 năm 2021 – 2022 lần 3 trường Nguyễn Công Trứ – Hà Nội : + Một lon nước ngọt hình trụ có đường kính đáy là 5 (cm), độ dài trục là 12 (cm). Tính diện tích toàn phần của lon nước hình trụ đó? + Trong cùng mặt phẳng tọa độ Oxy, cho: Parabol (P): 𝑦𝑦 = 𝑥𝑥2 và đường thẳng (d): 𝑦𝑦 = (𝑚𝑚 − 1) 𝑥𝑥 + 𝑚𝑚2 − 2𝑚𝑚 + 3. a) Chứng minh (d) luôn cắt (P) tại hai điểm phân biệt với mọi giá trị của m. b) Giả sử (d) cắt (P) tại hai điểm phân biệt A, B. Tìm m để tam giác OAB cân tại O. Khi đó tính diện tích tam giác OAB với m vừa tìm được. + Cho tam giác ABC nhọn, nội tiếp (O). Gọi D và E lần lượt là các điểm chính giữa cung nhỏ AC và cung nhỏ AB. Đường thẳng BD và CE cắt nhau tại F. Đường thẳng DE cắt AB và AC lần lượt tại I và K. a) Chứng minh: Tam giác EBF cân tại E. b) Chứng minh: Tứ giác EBFI nội tiếp được; từ đó suy ra IF // AC. c) Tứ giác AIFK là hình gì? Tại sao? d) Tam giác ABC cần thêm điều kiện gì để tứ giác AEFD là hình thoi và có diện tích gấp 3 lần diện tích tứ giác AIFK.
Đề thi thử vào lớp 10 môn Toán năm 2021 - 2022 trường THCS Phù Linh - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử vào lớp 10 môn Toán năm học 2021 – 2022 trường THCS Phù Linh, huyện Sóc Sơn, thành phố Hà Nội; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm; kỳ thi được diễn ra vào thứ Bảy ngày 22 tháng 05 năm 2021. Trích dẫn đề thi thử vào lớp 10 môn Toán năm 2021 – 2022 trường THCS Phù Linh – Hà Nội : + Trong mặt phẳng tọa độ Oxy cho parabol (P): 2y = −x và đường thẳng (d): y = mx − m − 2 (m là tham số). a) Với m = −2 , tìm tọa độ giao điểm của đường thẳng (d) và parabol (P). b) Tìm tất cả các giá trị của m để đường thẳng (d) cắt parabol (P) tại hai điểm biệt có hoành độ x1, x2 thỏa mãn x1 − x2 = 20. + Cho tam giác ABC nhọn nội tiếp đường tròn (O; R). Ba đường cao AD, BE, CF của tam giác ABC cùng đi qua trực tâm H. Kẻ đường kính AK của đường tròn (O; R). Gọi M là hình chiếu vuông góc của C trên AK. 1) Chứng minh tứ giác BFEC nội tiếp được đường tròn. 2) Chứng minh AB. AC = 2R.AD và MD // BK. 3) Giả sử BC là dây cung cố định của đường tròn (O; R) và A di động trên cung lớn BC. Tìm vị trí điểm A để diện tích tam giác AEH lớn nhất. + Cho hai số thực dương a, b thỏa mãn điều kiện a + b ≥ 3. Tìm giá trị lớn nhất của biểu thức a b M a b 2 2 1..