Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

650 câu trắc nghiệm có lời giải chi tiết trong các đề thi THPTQG môn Toán

Nhằm giúp quý thầy, cô giáo cùng các em học sinh khối 12 có thêm tài liệu chất lượng để ôn tập chuẩn bị cho kỳ thi THPT Quốc gia môn Toán năm học 2019 – 2020, giới thiệu tài liệu 650 câu trắc nghiệm có lời giải chi tiết trong các đề thi THPTQG môn Toán. Tài liệu gồm 360 trang được biên soạn bởi thầy Tiêu Phước Thừa tuyển chọn 650 câu hỏi và bài toán trắc nghiệm có đáp án và lời giải chi tiết, từ các đề thi chính thức THPT Quốc gia môn Toán của Bộ Giáo dục và Đào tạo trong các năm 2017, 2018, 2019. Khái quát nội dung tài liệu tuyển tập các câu hỏi và bài tập trong đề thi THPT Quốc gia môn Toán: 1. Bài toán chỉ sử dụng P hoặc C hoặc A. 2. Bài toán kết hợp P, C và A. 3. Nhị thức newton. 4. Tính xác suất bằng định nghĩa. 5. Tính xác suất bằng công thức cộng. 6. Tính xác suất bằng công thức nhân. 7. Tính xác suất kết hợp công thức nhân và cộng. 8. Nhận diện cấp số cộng. 9. Tìm hạng tử cấp số cộng. 10. Giới hạn dãy số. 11. Giới hạn hàm số. 12. Bài toán tiếp tuyến. 13. Bài toán quãng đường vận tốc gia tốc. 14. Xét tính đơn điệu dựa vào công thức. 15. Xét tính đơn điệu dựa vào công thức. 16. Tìm điều kiện để hàm số đơn điệu. 17. Ứng dụng tính đơn điệu vào giải phương trình, hệ phương trình, bất phương trình. 18. Cực trị hàm số cho bởi công thức. 19. Tìm cực trị dựa vào bbt, đồ thị. 20. Tìm m để hàm số đạt cực trị tại một điểm x0 cho trước. 21. Tìm m để hàm số, đồ thị hàm số bậc ba có cực trị thỏa mãn điều kiện. 22. Tìm m để hàm số, đồ thị hàm số trùng phương có cực trị thỏa mãn điều kiện. 23. Tìm m để hàm số, đồ thị hàm số các hàm số khác có cực trị thỏa mãn điều kiện. 24. Giá trị nhỏ nhất, Giá trị lớn nhất của hàm số trên đoạn. 25. Giá trị nhỏ nhất, Giá trị lớn nhất của hàm số trên khoảng. 26. Ứng dụng Giá trị lớn nhất, Giá trị nhỏ nhất, toán thực tế. 27. Bài toán xác định các đường tiệm cận của hàm số (không chứa tham số) hoặc biết bảng biến thiên, đồ thị. 28. Bài toán xác định các đường tiệm cận của hàm số có chứa tham số. 29. Bài toán liên quan đến đồ thị hàm số và các đường tiệm cận. 30. Câu hỏi lý thuyết về tiệm cận. 33. Biện luận nghiệm phương trình. 34. Sự tương giao của hai đồ thị (liên quan đến tọa độ giao điểm). 35. Điểm đặc biệt của đồ thị hàm số. 36. Lũy thừa. 37. Tập xác định hàm số lũy thừa. 38. Tính giá trị biểu thức chứa lô-ga-rít. 39. Biến đổi, rút gọn, biểu diễn biểu thức chứa lô-ga-rít. 40. So sánh các biểu thức lô-ga-rít. 41. Tập xác định của hàm số mũ hàm số logarit. 42. Tính đạo hàm hàm số mũ, hàm số lô-ga-rít. 43. Khảo sát sự biến thiên và đồ thị của hàm số mũ, lô-ga-rít. 44. Tìm giá trị lớn nhất, nhỏ nhất của biểu thức chứa hàm mũ, hàm lô-ga-rít. 45. Bài toán thực tế về hàm số mũ, logarit. 46. Lý thuyết tổng hợp hàm số lũy thừa, mũ, lô-ga-rít. 47. Phương trình cơ bản. 48. Đưa về cùng cơ số. 49. Đặt ẩn phụ. 50. Dùng phương pháp hàm số đánh giá. [ads] 51. Toán thực tế. 52. Bất phương trình cơ bản. 53. Đưa về cùng cơ số. 54. Đặt ẩn phụ. 55. Toán thực tế. 56. Sử dụng định nghĩa – tính chất cơ bản. 57. Dùng phương pháp nguyên hàm từng phần. 58. Tích phân cơ bản. 59. Phương pháp đổi biến. 60. Phương pháp từng phần. 61. Hàm đặc biệt hàm ẩn. 62. Diện tích hình phẳng được giới hạn bởi các đồ thị. 63. Bài toán thực tế sử dụng diện tích hình phẳng. 64. Thể tích giới hạn bởi các đồ thị (tròn xoay). 65. Thể tích tính theo mặt cắt S(x). 66. Toán thực tế. 67. Xác định các yếu tố cơ bản của số phức. 68. Biểu diễn hình học cơ bản của số phức. 69. Thực hiện phép tính cộng, trừ, nhân số phức. 70. Xác định các yếu tố cơ bản của số phức qua các phép toán. 71. Bài toán quy về giải phương trình, hệ phương trình nghiệm thực. 72. Bài toán tập hợp điểm số phức. 73. Phép chia số phức. 74. Phương trình bậc hai với hệ số thực. 75. Phương trình quy về bậc hai. 76. Phương pháp hình học. 77. Phương pháp đại số. 78. Xác định góc giữa hai đường thẳng (dùng định nghĩa). 79. Xác định góc giữa mặt phẳng và đường thẳng. 80. Xác định góc giữa hai mặt phẳng. 81. Góc giữa 2 véctơ, 2 đường thẳng trong hình lăng trụ, hình lập phương. 82. Khoảng cách điểm đến đường mặt. 83. Khoảng cách giữa hai đường chéo nhau. 84. Xác định số đỉnh, cạnh, mặt bên của một khối đa diện. 85. Phân chia, lắp ghép các khối đa diện. 86. Phép biến hình trong không gian. 87. Diện tích xung quanh diện tích toàn phần. 88. Tính thể tích các khối đa diện. 89. Tỉ số thể tích. 90. Các bài toán khác (góc, khoảng cách …) liên quan đến thể tích khối đa diện. 91. Toán thực tế. 92. Cực trị. 93. Thể tích khối nón, khối trụ. 94. Diện tích xung quanh, toàn phần, độ dài đường sinh, chiều cao, bán kính. 95. Khối tròn xoay nội tiếp, ngoại tiếp khối đa diện. 96. Bài toán thực tế về khối nón, khối trụ. 97. Bài toán sử dụng định nghĩa, tính chất, vị trí tương đối. 98. Khối cầu ngoại tiếp khối đa diện. 99. Toán tổng hợp về mặt cầu. 100. Tìm tọa độ điểm, véc-tơ liên quan đến hệ trục Oxyz. 101. Tích vô hướng và ứng dụng. 102. Phương trình mặt cầu (xác định tâm, bán kính, viết phương trình mặt cầu đơn giản, vị trí tương đối, hai mặt cầu, điểm đến mặt cầu, đơn giản). 103. Các bài toán cực trị. 104. Tích có hướng và ứng dụng. 105. Xác định vectơ pháp tuyến. 106. Viết phương trình mặt phẳng. 107. Tìm tọa độ điểm liên quan đến mặt phẳng. 108. Các bài toán khoảng cách. 109. Các bài toán xét vị trí tương đối. 110. Các bài toán cực trị. 111. Xác định vec-tơ chỉ phương. 112. Viết phương trình đường thẳng. 113. Tìm tọa độ điểm liên quan đường thẳng. 114. Khoảng cách. 115. Vị trí tương đối. 116. Tổng hợp mặt phẳng đường thẳng mặt cầu. 117. Các bài toán cực trị. 118. Ứng dụng phương pháp tọa độ.

Nguồn: toanmath.com

Đọc Sách

Bộ đề phát triển đề minh họa tốt nghiệp THPT năm 2020 môn Toán
Tài liệu gồm 144 trang, được tổng hợp và biên soạn bởi thầy giáo Nguyễn Hoàng Việt, tuyển tập câu hỏi và bài tập trắc nghiệm tương tự với đề minh họa tốt nghiệp THPT năm 2020 môn Toán của Bộ Giáo dục và Đào tạo, có đáp án và lời giải chi tiết, giúp học sinh khối 12 ôn tập để chuẩn bị cho kỳ thi tốt nghiệp THPT năm học 2019 – 2020. Trích dẫn tài liệu bộ đề phát triển đề minh họa tốt nghiệp THPT năm 2020 môn Toán: + Định hướng xây dựng bài toán: Tương tự như câu 43 giữ nguyên dạng phương trình và cách đặt vấn đề cũng như yêu cầu của bài toán: Cho phương trình (log 3 3x)^2 + log 3 x + m – 1 = 0 (m là tham số thực). Tập hợp tất cả các giá trị của m để phương trình đã cho có đúng hai nghiệm phân biệt thuộc khoảng (0;1). [ads] + Ý tưởng: Ta biết rằng với hình nón, ta có công thức: R^2 + h^2 = l^2. Trong ba đại lượng R, l, h nếu biết hai đại lượng thì tính được đại lượng còn lại. Nếu cho một trong ba đại lượng và ẩn giấu đại lượng thứ hai trong một giả thiết nào đó thì bài toán sẽ khó hơn cho luôn hai đại lượng. Cho hình nón có chiều cao bằng 3. Một mặt phẳng (a) đi qua đỉnh hình nón và cắt hình nón theo một thiết diện là tam giác đều. Biết góc giữa đường thẳng chứa trục của hình nón và mặt phẳng (a) là 45 độ. Thể tích của khối nón được giới hạn bởi hình nón đã cho bằng? + Nhận xét. Dạng toán ở mức độ thông hiểu. Học sinh cần kĩ năng quan sát và đọc bảng biến thiên, từ đó biện luận được số nghiệm phương trình thông qua sự tương giao giữa hai đồ thị. Cho hàm số f(x) = m xác định trên R \ {0}, liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau. Tìm tất cả giá trị thực của tham số m để phương trình f(x) = m có ba nghiệm thực phân biệt.
Phát triển bài toán vận dụng cao đề minh họa THPT 2020 môn Toán lần 2
Tài liệu gồm có 51 trang, được biên soạn bởi thầy giáo Lê Văn Đoàn, hướng dẫn giải và phát triển các bài toán vận dụng cao (VDC) trong đề minh họa kỳ thi tốt nghiệp THPT năm 2020 môn Toán lần 2 (câu 46, 47, 48, 49 và 50); các câu hỏi và bài toán tương tự và mở rộng có đáp án và lời giải chi tiết. Các dạng toán phát triển bài toán vận dụng cao đề minh họa THPT 2020 môn Toán lần 2: Phát triển câu 46: + Tìm số nghiệm của phương trình liên quan đến sinx khi biết bảng biến thiên. + Biện luận nghiệm dựa vào bảng biến thiên hoặc đồ thị hàm f(x). + Bài toán kết hợp giữa hàm số và tích phân. + Bài toán chứa tham số m trong bài toán chứa hàm cụ thể. Phát triển câu 47: + Tìm GTLN – GTNN của biểu thức hai ẩn phụ thuộc vào biểu thức mũ – logarit. + Bài toán dồn biến, rồi sử dụng bất đẳng thức Cauchy hoặc khảo sát hàm một biến. + Sử dụng f(u) = f(v) hoặc f(u) > f(v) hoặc f(u) < f(v) khi hai gặp hai hàm khác loại. Phát triển câu 48: + Tìm GTLN – GTNN của hàm phụ thuộc tham số trên đoạn. + Bài toán chứa tham số trong hàm cụ thể. + Bài toán max – min khi đề cho đồ thị hoặc bảng biến thiên. + Giá trị lớn nhất và nhỏ nhất của hàm trị tuyệt đối. Phát triển câu 49: Thể tích khối đa diện cắt ra từ một khối khác. Phát triển câu 50: Tìm số ẩn hoặc mối liên hệ giữa các ẩn trong phương trình logarit chứa hai ẩn.
Phát triển đề minh họa tốt nghiệp THPT 2020 môn Toán lần 2
Tài liệu gồm 213 trang được sưu tầm và biên soạn bởi thầy giáo Ths. Nguyễn Chín Em, phát triển đề minh họa tốt nghiệp THPT 2020 môn Toán lần 2. Với mỗi câu hỏi và bài toán trong đề thi, tài liệu bổ sung thêm nhiều câu hỏi và bài toán tương tự, có đáp án và lời giải chi tiết. 50 dạng toán phát triển đề minh họa tốt nghiệp THPT 2020 môn Toán lần 2: + Dạng toán 1. Hoán vị – Chỉnh hợp – Tổ hợp. + Dạng toán 2. Cấp số cộng. + Dạng toán 3. Phương trình Mũ – Logarits (phương trình mũ). + Dạng toán 4. Thể tích khối đa diện (Khối lập phương). + Dạng toán 5. Hàm số Mũ – Hàm số Logarits (hàm số Logarits). + Dạng toán 6. Nguyên hàm – Tích phân(Nguyên hàm). + Dạng toán 7. Thể tích khối đa diện (Khối chóp). + Dạng toán 8. Khối Nón – Trụ – Cầu (Công thức thể tích khối Nón). + Dạng toán 9. Khối Nón – Trụ – Cầu (Diện tích mặt cầu). + Dạng toán 10. Tính đơn điệu hàm số (Tìm khoảng đơn điệu khi biết bảng biến thiên). + Dạng toán 11. Logarits (Rút gọn biểu thức Logarits đơn giản). + Dạng toán 12. Khối Nón – Trụ – Cầu (Công thức diện tích xung quanh của trụ). + Dạng toán 13. Cực trị của hàm số (Tìm điểm cực trị khi biết bảng biến thiên). + Dạng toán 14. Khảo sát và vẽ đồ thị hàm số (Tìm hàm số khi biết đồ thị). + Dạng toán 15. Tiệm cận (Tìm tiệm cận ngang của hàm số). + Dạng toán 16. Bất phương trình Mũ – Logarits (Giải bất phương trình Logarit). + Dạng toán 17. Sự tương giao đồ thị (Đếm số nghiệm của phương trình khi biết đồ thị). + Dạng toán 18. Nguyên hàm – Tích phân (Tính tích phân dựa vào tính chất tích phân). + Dạng toán 19. Số phức (Tìm số phức liên hợp). + Dạng toán 20. Số phức (Tìm phần thực của tổng của hai số phức). + Dạng toán 21. Số phức (Tìm điểm biểu diễn của số phức). + Dạng toán 22. Hệ Oxyz (Tìm tọa độ hình chiếu của điểm lên mặt phẳng tọa độ). + Dạng toán 23. Hệ Oxyz (Tìm tọa độ tâm mặt cầu). + Dạng toán 24. Phương trình mặt phẳng (Tìm tọa đọ véc tơ pháp tuyến). + Dạng toán 25. Phương trình đường thẳng (Tìm tọa độ điểm thuộc đường thẳng đã cho). [ads] + Dạng toán 26. Quan hệ vuông góc trong không gian (Tìm góc giữa đường thẳng và mặt phẳng). + Dạng toán 27. Cực trị của hàm số (Tìm số điểm cực trị khi biết bảng biến thiên). + Dạng toán 28. GTLN và GTNN (Tìm GTLN – GTNN của hàm số trên đoạn). + Dạng toán 29. Logarits (Biểu diễn các tham số trong biểu thức Logarits đơn giản). + Dạng toán 30. Khảo sát và vẽ đồ thị hàm số (Tìm số giao điểm của đồ thị hàm số và trục hoành). + Dạng toán 31. Bất phương trình Mũ – Logarits (Giải Bphương trình Mũ). + Dạng toán 32. Mặt Nón – Trụ – Cầu (Tính diện tích xung quanh hình nón ). + Dạng toán 33. Nguyên hàm – Tích phân (Nhận dạng tích phân khi đổi biến). + Dạng toán 34. Ứng dụng tích phân (Tính diện tích hình phẳng). + Dạng toán 35. Số phức (Tìm phần ảo của tích hai số phức). + Dạng toán 36. Số phức (Phương trình bậc hai với hệ số thực). + Dạng toán 37. Phương trình đường thẳng trong Oxyz (Tổng hợp liên quan đường thẳng và mặt phẳng). + Dạng toán 38. Phương trình đường thẳng trong Oxyz (Lập phương trình đồ thị qua hai điểm). + Dạng toán 39. Tổ hợp – Xác suất (Tính xác suất biến cố). + Dạng toán 40. Khoảng cách (Khoảng cách giữa hai đường thẳng chéo nhau). + Dạng toán 41. Tính đơn điệu của hàm số (Tìm m để hàm số đồng biến trên R). + Dạng toán 42. Hàm số Mũ – Hàm số Logarits (Bài toán thực tế). + Dạng toán 43. Khảo sát và vẽ đồ thị hàm số (Nhận dạng các hệ số của hàm phân thức khi biết bảng biến thiên). + Dạng toán 44. Khối Nón – Trụ – Cầu (Bài toán thực tế tính thể tích của khối trụ). + Dạng toán 45. Nguyên hàm – Tích Phân (Tính tích phân hàm ẩn). + Dạng toán 46. Khảo sát và vẽ đồ thị hàm số (Tìm số nghiệm của phương trình liên quan đến sinx khi biết bảng biến thiên). + Dạng toán 47. Hàm số Mũ – Logarits (Tìm GTLN – GTNN của biểu thức hai ẩn phụ thuộc vào biểu thức mũ – logarits). + Dạng toán 48. GTLN – GTNN (Tìm GTLN – GTNN của hàm phụ thuộc tham số trên đoạn). + Dạng toán 49. Thể tích khối đa diện (Thể tích khối đa diện cắt ra từ một khối khác). + Dạng toán 50. Phương trình Mũ – Logarits (Tìm số ẩn hoặc mối liên hệ giữa các ẩn trong phương trình Logarits chứa hai ẩn).
Phát triển đề minh họa môn Toán kỳ thi tốt nghiệp THPT 2020
Hiện nay, một số trường THPT trên cả nước đã bắt đầu cho học sinh trở lại trường, sau một khoảng thời gian rất dài phải nghỉ học do bệnh dịch. Và sắp tới là quãng thời gian các em phải “tăng tốc” để có thể hoàn thành chương trình của năm học, nhất là với các em học sinh khối 12, còn phải chuẩn bị cho kỳ thi THPT Quốc gia do Bộ Giáo dục và Đào tạo tổ chức. Nhằm giúp các em trong quá trình học tập, sưu tầm và giới thiệu đến các em tài liệu phát triển đề minh họa môn Toán kỳ thi tốt nghiệp THPT 2020, đây là một sản phẩm của tập thể quý thầy, cô giáo nhóm Geogebra – Nguyễn Chín Em. Tài liệu gồm có 218 trang, sáng tạo và phát triển một số câu hỏi và bài tập dựa trên cấu trúc đề minh họa THPTQG 2020 môn Toán, có đáp án và lời giải chi tiết. [ads] Trích dẫn tài liệu phát triển đề minh họa môn Toán kỳ thi tốt nghiệp THPT 2020: + Cho hàm số y = |8x^4 + ax2 + b|. Trong đó a, b là các hệ số thực. Tìm mối liên hệ giữa a và b để giá trị lớn nhất của hàm số đã cho trên đoạn [−1; 1] bằng 1? + Chọn ngẫu nhiên một số từ tập hợp các số tự nhiên có ba chữ số đôi một khác nhau. Xác suất để chọn được số có chữ số hàng trăm, chữ số hàng đơn vị và tổng các chữ số theo thứ tự tạo thành 1 cấp số cộng có công sai dương. + Trong mặt phẳng tọa độ A, B, C là ba điểm biểu diễn lần lượt cho ba số phức z1 = 5 − i, z2 = (4 + i)^2 và z3 = (2i)^3. Diện tích của tam giác ABC là kết quả nào dưới đây?