Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tuyển tập 20 năm đề thi tuyển sinh vào lớp 10 môn Toán sở GDĐT Bình Định

Tài liệu gồm 32 trang, được tổng hợp bởi các tác giả: Đào Xuân Luyện, Huỳnh Duy Thủy, Nguyễn Công Nhã, Nguyễn Duy Chiến, Trần Văn Chớ, Cao Hoàng Hạ, Trần Đức An, tuyển tập đề thi tuyển sinh vào lớp 10 môn Toán của sở Giáo dục và Đào tạo tỉnh Bình Định trong vòng 20 năm gần đây, từ năm học 2000 – 2001 đến năm học 2019 – 2020. 1. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2000 – 2001 sở GD&ĐT Bình Định. 2. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2001 – 2002 sở GD&ĐT Bình Định. 3. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2002 – 2003 sở GD&ĐT Bình Định. 4. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2003 – 2004 sở GD&ĐT Bình Định. 5. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2004 – 2005 sở GD&ĐT Bình Định. 6. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2005 – 2006 sở GD&ĐT Bình Định. 7. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2006 – 2007 sở GD&ĐT Bình Định. 8. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2007 – 2008 sở GD&ĐT Bình Định. 9. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2008 – 2009 sở GD&ĐT Bình Định. [ads] 10. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2009 – 2010 sở GD&ĐT Bình Định. 11. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2010 – 2011 sở GD&ĐT Bình Định. 12. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2011 – 2012 sở GD&ĐT Bình Định. 13. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2012 – 2013 sở GD&ĐT Bình Định. 14. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2013 – 2014 sở GD&ĐT Bình Định. 15. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2014 – 2015 sở GD&ĐT Bình Định. 16. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2015 – 2016 sở GD&ĐT Bình Định. 17. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2016 – 2017 sở GD&ĐT Bình Định. 18. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2017 – 2018 sở GD&ĐT Bình Định. 19. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2018 – 2019 sở GD&ĐT Bình Định. 20. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2019 – 2020 sở GD&ĐT Bình Định.

Nguồn: toanmath.com

Đọc Sách

Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Bình Định
Nội dung Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Bình Định Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Bình Định Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Bình Định Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Bình Định bao gồm 5 bài toán tự luận, với lời giải chi tiết giúp học sinh hiểu rõ từng bước giải quyết vấn đề. Một số bài toán trong đề: Cho đường tròn (T) tâm O đường kính AB, trên tiếp tuyến tại A lấy một điểm P khác A, điểm K thuộc đoạn OB (K khác O và B). Đường thẳng PK cắt đường tròn (T) tại C và D (C nằm giữa P và D), H là trung điểm của CD Chứng minh tứ giác AOHP nội tiếp được đường tròn Kẻ DI song song PO, điểm I thuộc AB, chứng minh góc PDI = góc BAH Chứng minh đẳng thức: PA^2 = PC.PD BC cắt OP tại J, chứng minh AJ//DB Đề thi gồm nhiều bài toán thú vị và đa dạng, giúp học sinh rèn luyện kỹ năng tư duy logic, khả năng suy luận và giải quyết vấn đề một cách hiệu quả.
Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Bình Định
Nội dung Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Bình Định Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT năm học 2017-2018 môn Toán sở GD và ĐT Bình Định Đề thi tuyển sinh THPT năm học 2017-2018 môn Toán sở GD và ĐT Bình Định Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Bình Định bao gồm 6 bài toán tự luận, với lời giải chi tiết. Trong đó, một số bài toán được trích dẫn như sau: 1. Một đám đất hình chữ nhật có chu vi là 24m. Nếu tăng độ dài một cạnh lên 2m và giảm độ dài cạnh còn lại 1m, diện tích đám đất tăng thêm 1m2. Hãy tính độ dài các cạnh ban đầu của đám đất. 2. Cho tam giác ABC (AB < AC) nội tiếp trong đường tròn tâm O. M là điểm nằm trên cung BC không chứa điểm A. Gọi D, E, F lần lượt là hình chiếu của M trên các đường thẳng BC, CA, AB. Chứng minh rằng: a) Bốn điểm M, D, B, F thuộc một đường tròn và bốn điểm M, D, E, C thuộc một đường tròn b) Ba điểm D, E, F thẳng hàng c) BC/MD = CA/ME + AB/MF
Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Đồng Tháp
Nội dung Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Đồng Tháp Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Đồng Tháp Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Đồng Tháp Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Đồng Tháp bao gồm 5 bài toán tự luận. Trích một số bài toán trong đề: + Đoàn Thanh Niên Cộng Sản Hồ Chí Minh của một trường tổ chức hội thi Đồng Tháp với các nội dung về hoạt động khởi nghiệp, du lịch, văn hóa đặc trưng, món ăn, cây trái của tỉnh. Ba đội xuất sắc vào thi chung kết, mỗi đội trả lời 12 câu hỏi, mỗi câu đúng được cộng 10 điểm, sai trừ 3 điểm, không trả lời không được điểm. Đội Hoa Sen được 61 điểm, hỏi đội đã trả lời đúng, sai và không trả lời bao nhiêu câu hỏi? + Giáo viên sử dụng công nghệ thông tin, phần mềm biểu diễn để học sinh quan sát hình thang cân. Hình thang ABCD (AB song song với CD) có AB = 30cm, CD = 54cm, và đường cao AH = 9cm. Tính thể tích và diện tích mặt ngoài của hình tạo thành khi quay quanh cạnh đáy CD.
Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Vĩnh Long
Nội dung Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Vĩnh Long Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Vĩnh Long Đề thi tuyển sinh THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Vĩnh Long Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Vĩnh Long bao gồm 6 bài toán tự luận. Trong đó, có một bài toán về tam giác nhọn ABC nội tiếp đường tròn (O;R) và các đường cao AD, BM, CN cắt nhau tại H. Bài toán được phân thành các phần sau: Chứng minh rằng AM.AC = AN.AB. Chứng minh rằng OA vuông góc với MN. Gọi P là giao điểm của hai đường thẳng MN và BC. Đường thẳng đi qua N và song song với AC cắt AP, AD lần lượt tại I, G. Chứng minh rằng NI = NG. Bài toán này đòi hỏi học sinh phải áp dụng kiến thức về định lí và tính chất của tam giác nội tiếp, đường cao và đường trung trực để giải quyết các vấn đề được đưa ra. Việc làm bài toán này không chỉ giúp học sinh rèn luyện khả năng phán đoán, suy luận mà còn giúp họ hiểu sâu hơn về mối quan hệ giữa các yếu tố trong tam giác.