Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Lý thuyết, các dạng toán và bài tập phép nhân và phép chia đa thức

Tài liệu gồm 59 trang, tóm tắt lý thuyết, các dạng toán và bài tập phép nhân và phép chia đa thức, giúp học sinh lớp 8 tham khảo khi học chương trình Toán 8 (tập 1) phần Đại số chương 1. Bài 1. Nhân đơn thức với đa thức. Bài 2. Nhân đa thức với đa thức. + Dạng 1. Làm tính nhân. + Dạng 2. Tính giá trị của biểu thức. + Dạng 3. Rút gọn biểu thức. + Dạng 4. Tìm x thỏa mãn đẳng thức cho trước. + Dạng 5. Chứng minh giá trị biểu thức không phụ thuộc vào giá trị của biến. + Dạng 6. Giải toán bằng cách đặt ẩn x. + Dạng 7. Chứng minh đẳng thức. + Dạng 8. Áp dụng vào số học. + Dạng 9. Đa thức đồng nhất bằng nhau. Bài 3 – Bài 4 – Bài 5. Những hằng đẳng thức đáng nhớ. + Dạng 1. Áp dụng các hằng đẳng thức đáng nhớ để tính. + Dạng 2. Chứng minh đẳng thức. + Dạng 3. Tính nhanh. + Dạng 4. Rút gọn biểu thức và tính giá trị của biểu thức. + Dạng 5. Điền vào ô trống các hạng từ thích hợp. + Dạng 6. Biểu diễn đa thức dưới dạng bình phương, lập phương của một tổng (một hiệu). + Dạng 7. Một số hằng đẳng thức tổng quát. Bài 6 – Bài 7 – Bài 8 – Bài 9. Phân tích đa thức thành nhân tử. + Dạng 1. Phân tích đa thức thành nhân tử. + Dạng 2. Tính nhanh. + Dạng 3. Tính giá trị của biểu thức. + Dạng 4. Tìm x thỏa mãn đẳng thức cho trước. + Dạng 5. Áp dụng vào số học. + Dạng 6. Tìm các cặp số nguyên (x;y) thỏa mãn đẳng thức cho trước. + Dạng 7. Phương pháp đặt ẩn phụ. + Dạng 8. Phương pháp hệ số bất định. + Dạng 9. Chứng minh đẳng thức. + Dạng 10. Chứng minh bất đẳng thức. Bài 10. Chia đơn thức cho đơn thức. Bài 11. Chia đa thức cho đơn thức. + Dạng 1. Làm tính chia. + Dạng 2. Tính giá trị biểu thức. + Dạng 3. Không làm tính chia, xét xem đa thức a có chia hết cho đơn thức b không? Bài 12. Chia đa thức một biến đã sắp xếp. + Dạng 1. Thực hiện phép chia đa thức. + Dạng 2. Tính nhanh. + Dạng 3. Áp dụng định lí Bézout để phân tích đa thức ra thừa số. + Dạng 4. Tìm số nguyên n để biểu thức a(n) chia hết cho biểu thức b(n). + Dạng 5. Phân tích đa thức thành nhân tử bằng phương pháp xét giá trị riêng. + Dạng 6. Tìm các hệ số để đa thức f(x) chia hết cho g(x). + Dạng 7. Tìm dư trong phép chia đa thức. Ôn tập chương I. A. Bài tập ôn trong SGK. B. Bài tập bổ sung.

Nguồn: toanmath.com

Đọc Sách

Một số chuyên đề bồi dưỡng học sinh giỏi Toán 8
Tài liệu gồm 251 trang, tuyển tập một số chuyên đề bồi dưỡng học sinh giỏi Toán 8, hỗ trợ học sinh trong quá trình ôn tập chuẩn bị cho kỳ thi chọn học sinh giỏi Toán 8 các cấp (cấp trường, cấp quận / huyện, cấp thành phố / tỉnh …). CHỦ ĐỀ 1 . HẰNG ĐẲNG THỨC. + Các hằng đẳng thức cơ bản. + Các hằng đẳng thức mở rộng hay sử dụng. CHUYÊN ĐỀ 2 . PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ. + Phương pháp tách hạng tử. + Phương pháp nhóm hạng tử. + Phương pháp dùng hằng đẳng thức. + Phương pháp thêm, bớt cùng một hạng tử. + Phương pháp đổi biến. + Phương pháp hệ số bất định. + Đối với đa thức đa ẩn. + Các ứng dụng của phân tích đa thức thành nhân tử. CHUYÊN ĐỀ 3 . GIÁ TRỊ LỚN NHẤT, GIÁ TRỊ NHỎ NHẤT CỦA BIỂU THỨC. + Tìm GTLN – GTNN của tam thức bậc hai ax2 + bx + c. + Tìm GTLN – GTNN của đa thức có bậc cao hơn 2. + Đa thức có từ hai biến trở lên. + Tìm GTLN – GTNN của biểu thức có quan hệ ràng buộc giữa các biến. + Phương pháp đổi biến số. + Sử dụng bất đẳng thức có chứa dấu giá trị tuyệt đối. + Dạng phân thức. CHUYÊN ĐỀ 4 . PHƯƠNG TRÌNH ĐẠI SỐ. + Phương trình bậc nhất một ẩn. + Bất phương trình bậc nhất một ẩn. + Phương trình bậc cao. CHUYÊN ĐỀ 5 . ĐỒNG NHẤT THỨC. + Các bài toán về biểu thức nguyên. + Các dạng toán về phân thức đại số. + Rút gọn biểu thức. + Biểu thức có tính quy luật. CHUYÊN ĐỀ 6 . BẤT ĐẲNG THỨC. + Dùng định nghĩa và các phép biến đổi tương đương. + Dùng các phép biến đổi tương đương. + Bất đẳng thức dạng nghịch đảo (Cô-si cộng mẫu). + Dùng các bất đẳng thức phụ. + Phương pháp phản chứng. CHUYÊN ĐỀ 7 . ĐA THỨC. + Tính chia hết của đa thức. + Phần dư trong phép chia đa thức. + Dùng phương pháp xét giá trị riêng để tìm hệ số của một đa thức. + Đặt phép chia để tìm hệ số. CHUYÊN ĐỀ 8 . HÌNH HỌC. + Hình thang, hình thang cân. + Đường trung bình của tam giác, hình thang. + Đối xứng trục, đối xứng tâm. + Hình bình hành. + Hình chữ nhật. + Hình thoi. + Hình vuông. + Các bài tập tổng hợp về tứ giác đặc biệt. Xem thêm : Đề thi HSG Toán 8
Hướng dẫn ôn tập học kì 2 Toán 8 năm 2020 - 2021 trường Vinschool - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 8 đề cương hướng dẫn ôn tập học kì 2 Toán 8 năm học 2020 – 2021 trường Vinschool – Hà Nội, nhằm giúp các em rèn luyện, chuẩn bị cho kỳ kiểm tra khảo sát chất lượng môn Toán 8 giai đoạn cuối học kỳ 2 năm học 2020 – 2021. I. KIẾN THỨC TRỌNG TÂM Phương trình: – Phương trình tương đương. – Định nghĩa phương trình bậc nhất một ẩn. – Hai quy tắc biến đổi phương trình. – Cách giải phương trình bậc nhất một ẩn, phương trình đưa được về dạng bậc nhất một ẩn, phương trình tích, phương trình chứa ẩn ở mẫu. – Cách giải phương trình chứa dấu giá trị tuyệt đối. Bất phương trình: – Tập nghiệm của bất phương trình. – Bất phương trình tương đương. – Định nghĩa bất phương trình bậc nhất một ẩn. – Hai quy tắc biến đổi bất phương trình. – Cách giải bất phương trình bậc nhất một ẩn, bất phương trình đưa được về dạng bậc nhất một ẩn. Giải bài toán bằng cách lập phương trình: – Các bước giải bài toán bằng cách lập phương trình. – Các dạng toán giải bằng cách lập phương trình: chuyển động, năng suất, số và chữ số, phần trăm, hình học. Bất đẳng thức: – Mối liên hệ giữa thứ tự và phép tính (phép cộng, phép nhân). – Chứng minh bất đẳng thức. – Tìm giá trị lớn nhất, giá trị nhỏ nhất. Định lí Ta-let. Tính chất đường phân giác: – Định lí Ta-lét, định lí đảo và hệ quả của định lí Ta-lét. – Tính chất đường phân giác của tam giác. Tam giác đồng dạng: – Khái niệm hai tam giác đồng dạng. – Các trường hợp đồng dạng của tam giác, tam giác vuông. Hình học không gian: – Khái niệm hình hộp chữ nhật, hình lập phương, hình lăng trụ đứng. – Các công thức tính diện tích xung quanh, diện tích toàn phần, thể tích của hình hộp chữ nhật, hình lập phương, hình lăng trụ đứng. II. BÀI TẬP MINH HỌA
Chuyên đề diện tích xung quanh và thể tích của hình chóp đều
Tài liệu gồm 12 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề diện tích xung quanh và thể tích của hình chóp đều, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 4: Hình lăng trụ đứng, hình chóp đều. A. BÀI GIẢNG CỦNG CỐ KIẾN THỨC NỀN 1. Công thức tính diện tích, thể tích hình chóp đều. 2. Công thức tính diện tích, thể tích hình chóp cụt đều. B. VÍ DỤ MINH HỌA C. PHIẾU BÀI TỰ LUYỆN 1. Dạng toán đại lượng hình học. 2. Dạng toán chứng minh.
Chuyên đề hình chóp đều, hình chóp cụt đều
Tài liệu gồm 11 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề hình chóp đều, hình chóp cụt đều, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 4: Hình lăng trụ đứng, hình chóp đều. A. Bài giảng củng cố kiến thức nền 1. Hình chóp: Hình chóp là hình có mặt đáy là một đa giác và các mặt bên là các tam giác có chung đỉnh. 2. Hình chóp đều: Hình chóp đều là hình chóp có đáy là một đa giác đều, các mặt bên là tam giác cân bằng nhau có chung đỉnh. 3. Hình chóp cụt đều: Cắt một hình chóp đều bằng một mặt phẳng song song với đáy, phần hình chóp nằm giữa mặt phẳng đó và mặt phẳng đáy là một hình chóp cụt đều. B. Phương pháp giải toán C. Phiếu bài tự luyện Dạng 1: Biến đổi công thức tính các đại lượng. Dạng 2: Những bài toán về tự luận.