Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phân dạng và bài tập lớp 9 môn Toán

Nội dung Phân dạng và bài tập lớp 9 môn Toán Bản PDF - Nội dung bài viết Tài liệu Toán lớp 9 - Phân dạng và bài tậpMục lục:Chương 1: Đại sốChương 2: Hàm số bậc nhấtChương 3: Hệ hai phương trình bậc nhất hai ẩn Tài liệu Toán lớp 9 - Phân dạng và bài tập Tài liệu này gồm tổng cộng 103 trang, được biên soạn bởi thầy giáo Võ Hoàng Nghĩa và cô giáo Nguyễn Thị Hồng Loan. Tài liệu tập trung vào việc phân dạng và tuyển chọn các bài tập Toán cho học sinh lớp 9. Mục lục: Chương 1: Đại số Bài 1: Căn bậc hai - Căn thức bậc hai - Tóm tắt lí thuyết và các dạng bài tập như tìm điều kiện để biểu thức có nghĩa, tính giá trị biểu thức, rút gọn biểu thức, giải phương trình. Bài 2: Liên hệ giữa phép khai phương và phép nhân, phép chia - Tóm tắt lí thuyết và bài tập tự luận về thực hiện phép tính, rút gọn biểu thức, giải phương trình, chứng minh bất đẳng thức. Bài 3: Biến đổi đơn giản biểu thức chứa căn thức bậc hai - Tóm tắt lí thuyết và bài tập tự luận về thực hiện phép tính, rút gọn biểu thức, giải phương trình, chứng minh đẳng thức. Bài 4: Rút gọn biểu thức chứa căn thức bậc hai - Tóm tắt lí thuyết và bài tập tự luận. Bài 5: Căn bậc ba - Tóm tắt lí thuyết và bài tập tự luận về thực hiện phép tính, chứng minh đẳng thức, so sánh hai số, giải phương trình. Bài 6: Ôn tập chương I Chương 2: Hàm số bậc nhất Bài 1: Khái niệm hàm số - Tóm tắt lí thuyết và bài tập tự luận. Bài 2: Hàm số bậc nhất - Tóm tắt lí thuyết và bài tập tự luận. Bài 3: Ôn tập chương II Chương 3: Hệ hai phương trình bậc nhất hai ẩn Bài 1: Phương trình bậc nhất hai ẩn - Tóm tắt lí thuyết và bài tập tự luận. Bài 2: Hệ hai phương trình bậc nhất hai ẩn - Tóm tắt lí thuyết và bài tập tự luận. Bài 3: Giải hệ hai phương trình bậc nhất hai ẩn - Tóm tắt lí thuyết và bài tập tự luận. Bài 4: Giải toán bằng cách lập hệ phương trình bậc nhất hai ẩn - Tóm tắt lí thuyết và các dạng bài tập khác nhau. Bài 5: Ôn tập chương III

Nguồn: sytu.vn

Đọc Sách

Chuyên đề độ dài đường tròn, cung tròn
Tài liệu gồm 29 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề độ dài đường tròn, cung tròn, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 3 bài số 9. A. TRỌNG TÂM CƠ BẢN CẦN ĐẠT I. TÓM TẮT LÝ THUYẾT 1. Công thức tính độ dài đường tròn (chu vi đường tròn). Độ dài (C) của một đường tròn bán kính R được tính theo công thức: C = 2piR hoặc C = pid (với d = 2R). 2. Công thức tính độ dài cung tròn. Trên đường tròn bán kính R, độ dài l của một cung n° được tính theo công thức: l = piRn/180. II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1. Tính độ dài đường tròn, cung tròn. Phương pháp giải: Áp dụng công thức đã nêu trong phần tóm tắt lý thuyết. Dạng 2. Một số bài toán tổng hợp. Phương pháp giải: Áp dụng công thức trên và các kiến thức đã có. III. BÀI TẬP CƠ BẢN VỀ NHÀ B. NÂNG CAO PHÁT TRIỂN TƯ DUY C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ D. PHIẾU BÀI TỰ LUYỆN CƠ BẢN VÀ NÂNG CAO
Chuyên đề tứ giác nội tiếp
Tài liệu gồm 38 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề tứ giác nội tiếp, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 3 bài số 7. A. TRỌNG TÂM CƠ BẢN CẦN ĐẠT I. TÓM TẮT LÝ THUYẾT 1. Định nghĩa. 2. Định lí. 3. Một số dấu hiệu nhận biết tứ giác nội tiếp. II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1. Chứng minh tứ giác nội tiếp. Phương pháp giải: Để chứng minh tứ giác nội tiếp, ta có thể sử dụng một trong các cách sau: + Cách 1. Chứng minh tứ giác có tổng hai góc đối bằng 180°. + Cách 2. Chứng minh tứ giác có hai đỉnh kề nhau cùng nhìn cạnh chứa hai đỉnh còn lại dưới một góc α. + Cách 3. Chứng minh tứ giác có góc ngoài tại một đỉnh bằng góc trong của đỉnh đối diện. + Cách 4. Tìm được một điểm cách đều bốn đỉnh của tứ giác. Dạng 2. Sử dụng tứ giác nội tiếp để chứng minh các góc bằng nhau, các đoạn thẳng bằng nhau, các đường thẳng song song hoặc đồng quy, các tam giác đồng dạng. Phương pháp: Sử dụng tính chất của tứ giác nội tiếp. III. BÀI TẬP VỂ NHÀ B. NÂNG CAO PHÁT TRIỂN TƯ DUY C. PHIẾU BÀI TỰ LUYỆN CƠ BẢN NÂNG CAO
Chuyên đề cung chứa góc
Tài liệu gồm 30 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề cung chứa góc, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 3 bài số 6. A. TRỌNG TÂM CẦN ĐẠT I. TÓM TẮT LÝ THUYẾT 1. Quỹ tích cung chứa góc. 2. Cách vẽ cung chứa góc a. 3. Cách giải bài toán quỹ tích. II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1 . Quỹ tích là cung chứa góc a. Phương pháp giải: Thực hiện theo ba bước sau: + Bước 1. Tìm đoạn cố định trong hình vẽ. + Bước 2. Nối điểm phải tìm với hai đầu đoạn thẳng cố định đó, xác định góc a không đổi. + Bước 3. Khẳng định quỹ tích điểm phải tìm là cung chứa góc a dựng trên đoạn cố định. Dạng 2 . Chứng minh nhiều điểm thuộc đường tròn. Phương pháp giải: Chứng minh nhiều điểm cùng thuộc nửa mặt phẳng bờ là AB và cùng nhìn đoạn cố định AB dưới một góc không đổi. Dạng 3 . Dạng cung chứa góc. Phương pháp giải: Thực hiện theo bốn bước sau: + Bước 1. Vẽ đường trung trực d của đoạn thẳng AB. + Bước 2. Vẽ tia Ax tạo với AB một góc α. + Bước 3. Vẽ đường thẳng Ay vuông góc với Ax. Gọi O là giao điểm của Ay với d. + Bước 4. Vẽ cung AmB, tâm Om bán kính OA sao cho cung này nằm ở nửa mặt phẳng bờ AB không chứa tia Ax. Cung AmB được vẽ như trên là một cung chứa góc α. III. BÀI TẬP VỀ NHÀ B. NÂNG CAO PHÁT TRIỂN TƯ DUY C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ D. PHIẾU BÀI TỰ LUYỆN CƠ BẢN VÀ NÂNG CAO
Chuyên đề góc có đỉnh ở bên trong đường tròn, góc có đỉnh ở bên ngoài đường tròn
Tài liệu gồm 39 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề góc có đỉnh ở bên trong đường tròn, góc có đỉnh ở bên ngoài đường tròn, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 3 bài số 5. A. TRỌNG TÂM CẦN ĐẠT I. TÓM TẮT LÝ THUYẾT + Định lí 1. Số đo của góc có đỉnh ở bên trong đường tròn bằng nửa tổng số đo hai cung bị chắn. + Định lí 2. Số đo của góc có đỉnh ở bên ngoài đường tròn bằng nửa hiệu số đo hai cung bị chắn. II. CÁC DẠNG BÀI MINH HỌA Dạng 1. Chứng minh hai góc hoặc hai đoạn thẳng bằng nhau. Phương pháp giải: Sử dụng hai định lý về số đo của góc có đỉnh bên trong đường tròn, góc có đỉnh bên ngoài đường tròn. Dạng 2. Chứng minh hai đường thẳng song song hoặc vuông góc. Chứng minh các đẳng thức cho trước. Phương pháp giải: Áp dụng hai định lý về số đo của góc có đỉnh bên trong đường tròn, góc có đỉnh bên ngoài đường tròn để có được các góc bằng nhau, cạnh bằng nhau. Từ đó, ta suy điều cần chứng minh. III. BÀI TẬP VỂ NHÀ B. NÂNG CAO PHÁT TRIỂN TƯ DUY C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ D. PHIẾU BÀI TỰ LUYỆN