Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài toán viết phương trình tiếp tuyến - Nguyễn Hữu Học

Tài liệu gồm 17 trang, được biên soạn bởi thầy giáo Nguyễn Hữu Học, tuyển chọn 50 bài toán viết phương trình tiếp tuyến, một dạng toán quan trọng trong chương trình Đại số và Giải tích 11 chương 5: Đạo hàm. Khái quát nội dung tài liệu bài toán viết phương trình tiếp tuyến – Nguyễn Hữu Học: Vấn đề 1 . Phương trình tiếp tuyến của đồ thị hàm số tại một điểm. Cho hàm số y = f(x) có đồ thị (C) và M(x0;y0) là điểm trên (C). Tiếp tuyến với đồ thị (C) tại M(x0;y0) có phương trình: y − y0 = f'(x0)(x − x0). Vấn đề 2 . Phương trình tiếp tuyến của đồ thị hàm số biết hệ số góc. Giải phương trình f'(x) = k tìm các nghiệm x1, x2, …. Viết phương trình tiếp tuyến: y = f'(xi)(x − xi) + f(xi) (i = 1,2,…,n). [ads] Vấn đề 3 . Phương trình tiếp tuyến của đồ thị hàm số đi qua một điểm. Phương trình tiếp tuyến của đồ thị (C): y = f (x) đi qua điểm M(x1;y1). Cách 1 : Phương trình đường thẳng (d) đi qua điểm M có hệ số góc là k có dạng: y = k(x − x1) + y1. (d) tiếp xúc với đồ thị (C) tại N(x0;y0); khi hệ: f(x0) = k(x0 − x1) + y1 và f'(x0) = k có nghiệm x0. Cách 2 : Gọi N(x0;y0) là tọa độ tiếp điểm của đồ thị (C) và tiếp tuyến (d) qua điểm M, nên (d) cũng có dạng y = y’0(x − x0) + y0. (d) đi qua điểm M nên có phương trình: y1 = y’0(x1 − x0) + y0. Từ phương trình trên ta tìm được tọa độ điểm N(x0;y0); từ đây ta tìm được phương trình đường thẳng (d).

Nguồn: toanmath.com

Đọc Sách

300 câu trắc nghiệm đạo hàm theo chủ đề có đáp án - Phạm Văn Huy
Tài liệu gồm 32 trang với các bài toán trắc nghiệm đạo hàm được phân loại thành: 1. Định nghĩa đạo hàm 2. Đạo hàm của hàm đa thức – hữu tỉ – căn thức 3. Đạo hàm của hàm số lượng giác 4. Đạo hàm cấp cao 5. Vi phân 6. Tiếp tuyến – ý nghĩa của đạo hàm [ads]