Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề Olympic Toán 8 năm 2018 - 2019 phòng GDĐT TX Thái Hòa - Nghệ An

THCS. giới thiệu đến các em học sinh lớp 8 đề Olympic Toán 8 năm 2018 – 2019 phòng GD&ĐT TX Thái Hòa – Nghệ An, nhằm giao lưu và tuyển chọn các em học sinh giỏi Toán 8 đang học tập tại các trường THCS trên địa bàn Thị xã Thái Hòa, tỉnh Nghệ An. Đề Olympic Toán 8 năm 2018 – 2019 phòng GD&ĐT TX Thái Hòa – Nghệ An được biên soạn theo hình thức tự luận với 05 bài toán, học sinh làm bài trong 90 phút. Trích dẫn đề Olympic Toán 8 năm 2018 – 2019 phòng GD&ĐT TX Thái Hòa – Nghệ An : + Cho tam giác ABC vuông tại A, có trung tuyến AM, đường cao AH. Trên cùng nửa mặt phẳng bờ BC kẻ hai tia Ax và Cy cùng vuông góc với BC. Qua A kẻ đường thẳng vuông góc với AM cắt Bx và Cy lần lượt tại P và Q. Chứng minh: a) AP = BP và AQ = CQ. b) PC đi qua trung điểm I của AH. c) Khi BC cố định, BC = 2a, điểm A chuyển động sao cho BAC = 90°. Tìm vị trí điểm H trên đoạn thẳng BC để diện tích tam giác ABH đạt giá trị lớn nhất, tìm giá trị lớn nhất đó. [ads] + Cho phân thức: P = (n^3 + 2n^2 – 1)/(n^3 + 2n^2 + 2n + 1). a) Hãy tình điều kiện xác định và rút gọn phân thức trên. b) Chứng minh rằng nếu n là một số nguyên thì giá trị phân thức tìm được trong câu a luôn là một phân số tối giản. + Tìm đa thức f(x) biết: f(x) chia cho x – 2 dư 5; f(x) chia cho x – 3 dư 7; f(x) chia cho (x – 2)(x – 3) được thương là x^2 -1 và đa thức dư là đa thức bậc nhất đối với x.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi huyện lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Kỳ Anh Hà Tĩnh
Nội dung Đề học sinh giỏi huyện lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Kỳ Anh Hà Tĩnh Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 8 huyện Kỳ Anh năm học 2022-2023 Đề thi học sinh giỏi Toán lớp 8 huyện Kỳ Anh năm học 2022-2023 Chào quý thầy cô và các em học sinh lớp 8! Hôm nay Sytu xin giới thiệu đến các bạn đề thi học sinh giỏi cấp huyện môn Toán lớp 8 năm học 2022-2023 do Phòng Giáo dục và Đào tạo UBND huyện Kỳ Anh, tỉnh Hà Tĩnh tổ chức. Trong đề thi đó, các bạn sẽ được thử sức với những bài toán đa dạng và thú vị như sau: + Cho đa thức f(x) và biết khi chia đa thức f(x) cho các đa thức (x - 2) và (x - 3) thì được dư lần lượt là 5 và 7. Nếu chia đa thức f(x) cho đa thức (2x^2 + 5x + 6) thì được thương là 2x + 1. Hãy tìm đa thức f(x) đó. + Dãy số được cho theo quy luật như sau: 5, 7, 11, 19, ... Hãy viết biểu thức biểu diễn số hạng thứ n của dãy số trên. + Xã A tổ chức giải giao hữu bóng đá theo hình thức thi đấu vòng tròn một lượt. Biết rằng số trận thắng gấp ba lần số trận hòa và tổng số điểm của các đội là 330 điểm. Hỏi có tất cả bao nhiêu đội tham gia giải đấu? + Mảnh vườn hình thang có độ dài hai đáy lần lượt là 5m và 15m, độ dài hai đường chéo lần lượt là 16m và 12m. Hãy tính diện tích của mảnh vườn đó. + Cho tam giác ABC có trung tuyến AM và đường thẳng bất kỳ đi qua trọng tâm G cắt các cạnh AB và AC thứ tự tại E và F. Hãy tính giá trị của biểu thức AB/AC * AE/AF. Đề thi học sinh giỏi Toán lớp 8 huyện Kỳ Anh năm học 2022-2023 rất hấp dẫn và đòi hỏi sự tư duy logic, khả năng giải quyết vấn đề của các em. Chúc các bạn ôn tập tốt và thành công trong kỳ thi sắp tới!
Đề Olympic 27 tháng 04 lớp 8 môn Toán năm 2022 2023 sở GD ĐT Bà Rịa Vũng Tàu
Nội dung Đề Olympic 27 tháng 04 lớp 8 môn Toán năm 2022 2023 sở GD ĐT Bà Rịa Vũng Tàu Bản PDF - Nội dung bài viết Đề Olympic 27 tháng 04 lớp 8 môn Toán năm 2022-2023 sở GD ĐT Bà Rịa Vũng Tàu Đề Olympic 27 tháng 04 lớp 8 môn Toán năm 2022-2023 sở GD ĐT Bà Rịa Vũng Tàu Chào mừng đến với Đề thi Olympic 27 tháng 04 môn Toán lớp 8 năm học 2022 – 2023 của sở Giáo dục và Đào tạo tỉnh Bà Rịa – Vũng Tàu! Đề thi sẽ được tổ chức vào ngày 23 tháng 03 năm 2023, và sẽ đi kèm đáp án và hướng dẫn chấm điểm. Trong đề thi này, có nhiều câu hỏi thú vị và đầy thách thức. Ví dụ như trong câu hỏi về tam giác ABC vuông tại A, bạn sẽ cần chứng minh những tính chất về tia phân giác, tam giác cân và các góc nhọn. Câu hỏi khác đưa ra một bài toán về điều kiện của đường thẳng để tìm giá trị lớn nhất của một phân số. Không chỉ thế, có cả bài toán đòi hỏi bạn tìm tất cả các số nguyên dương thỏa mãn một điều kiện chia hết và tìm ra các số hữu tỉ thỏa mãn một phương trình phức tạp. Với những bài toán đa dạng và thú vị như vậy, chắc chắn rằng bạn sẽ phải đầu tư thời gian và tư duy đề giải những câu hỏi này. Chúc các em học sinh lớp 8 thành công và giải bài tập tốt nhé!
Đề giao lưu HSG lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Lang Chánh Thanh Hóa
Nội dung Đề giao lưu HSG lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Lang Chánh Thanh Hóa Bản PDF - Nội dung bài viết Đề giao lưu HSG lớp 8 môn Toán năm 2022-2023 phòng GD ĐT Lang Chánh Thanh Hóa Đề giao lưu HSG lớp 8 môn Toán năm 2022-2023 phòng GD ĐT Lang Chánh Thanh Hóa Xin chào quý thầy cô và các em học sinh lớp 8! Trong kỳ học 2022-2023, phòng Giáo dục và Đào tạo huyện Lang Chánh, tỉnh Thanh Hóa sẽ tổ chức đề giao lưu học sinh giỏi môn Toán lớp 8. Kỳ thi sẽ diễn ra vào ngày 01 tháng 04 năm 2023, với đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn một số câu hỏi trong đề thi: Giải phương trình: $2x^2 y - xy^3 = 12$. Cho $x, y$ là các số nguyên thỏa mãn đẳng thức trên. Chứng minh rằng $2x^2 y$ chia hết cho 40. Cho đoạn thẳng $AB$. Kẻ tia $Bx$ vuông góc với $AB$ tại $B$. Trên tia $Bx$ lấy điểm $C$ ($C$ khác $B$). Chứng minh rằng: $HA \cdot HC = HB^2$. Kẻ $HD$ vuông góc với $BC$ ($D$ thuộc $BC$). Gọi $I$ là giao điểm của $AD$ và $BH$. Chứng minh rằng ba điểm $C, I, M$ thẳng hàng. Cho các số $a,b,c$ không âm thỏa mãn $abc=3$. Tìm giá trị nhỏ nhất của biểu thức $a^3+b^3+c^3$. Để biết thêm chi tiết và làm bài thi thử, bạn có thể tải file WORD tại đây: [link]. Chúc các em ôn tập tốt và thành công trong kỳ thi sắp tới!
Đề học sinh giỏi lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Đông Hưng Thái Bình
Nội dung Đề học sinh giỏi lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Đông Hưng Thái Bình Bản PDF - Nội dung bài viết Đề học sinh giỏi lớp 8 môn Toán năm 2022 - 2023 phòng GD ĐT Đông Hưng Thái Bình Đề học sinh giỏi lớp 8 môn Toán năm 2022 - 2023 phòng GD ĐT Đông Hưng Thái Bình Sytu xin chào đến với quý thầy cô và các em học sinh lớp 8. Trong đề khảo sát chọn nguồn học sinh giỏi môn Toán lớp 8 năm học 2022 - 2023 của phòng Giáo dục và Đào tạo huyện Đông Hưng, tỉnh Thái Bình. Dưới đây là một số câu hỏi trong đề: 1. Cho x, y, z thoả mãn: 2x^2 + 4y^2 + z^2 + 4xy + 4xz = 5. Tính giá trị của biểu thức: x^2023 + Q^10 - yz. 2. Tìm đa thức dư khi chia đa thức f(x) cho 2(x - 6), biết f(x) chia cho (x - 2) dư -12 và f(x) chia cho (x - 3) dư 28. 3. Cho hình vuông ABCD có cạnh bằng a, gọi O là giao điểm của hai đường chéo. Chứng minh rằng BI // CM và tính diện tích tứ giác BIOM theo a. Chứng minh rằng IM // BN và OM.MK = MB.MC. Chứng minh chu vi tam giác CME không đổi khi điểm I di chuyển trên cạnh AB và luôn có ∠IOM = 90.