Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề Olympic Toán 8 năm 2018 - 2019 phòng GDĐT TX Thái Hòa - Nghệ An

THCS. giới thiệu đến các em học sinh lớp 8 đề Olympic Toán 8 năm 2018 – 2019 phòng GD&ĐT TX Thái Hòa – Nghệ An, nhằm giao lưu và tuyển chọn các em học sinh giỏi Toán 8 đang học tập tại các trường THCS trên địa bàn Thị xã Thái Hòa, tỉnh Nghệ An. Đề Olympic Toán 8 năm 2018 – 2019 phòng GD&ĐT TX Thái Hòa – Nghệ An được biên soạn theo hình thức tự luận với 05 bài toán, học sinh làm bài trong 90 phút. Trích dẫn đề Olympic Toán 8 năm 2018 – 2019 phòng GD&ĐT TX Thái Hòa – Nghệ An : + Cho tam giác ABC vuông tại A, có trung tuyến AM, đường cao AH. Trên cùng nửa mặt phẳng bờ BC kẻ hai tia Ax và Cy cùng vuông góc với BC. Qua A kẻ đường thẳng vuông góc với AM cắt Bx và Cy lần lượt tại P và Q. Chứng minh: a) AP = BP và AQ = CQ. b) PC đi qua trung điểm I của AH. c) Khi BC cố định, BC = 2a, điểm A chuyển động sao cho BAC = 90°. Tìm vị trí điểm H trên đoạn thẳng BC để diện tích tam giác ABH đạt giá trị lớn nhất, tìm giá trị lớn nhất đó. [ads] + Cho phân thức: P = (n^3 + 2n^2 – 1)/(n^3 + 2n^2 + 2n + 1). a) Hãy tình điều kiện xác định và rút gọn phân thức trên. b) Chứng minh rằng nếu n là một số nguyên thì giá trị phân thức tìm được trong câu a luôn là một phân số tối giản. + Tìm đa thức f(x) biết: f(x) chia cho x – 2 dư 5; f(x) chia cho x – 3 dư 7; f(x) chia cho (x – 2)(x – 3) được thương là x^2 -1 và đa thức dư là đa thức bậc nhất đối với x.

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát HSG Toán 8 năm 2023 - 2024 trường THCS Song Mai - Bắc Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát học sinh giỏi môn Toán 8 năm học 2023 – 2024 trường THCS Song Mai, thành phố Bắc Giang, tỉnh Bắc Giang; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát HSG Toán 8 năm 2023 – 2024 trường THCS Song Mai – Bắc Giang : + Tìm giá trị nhỏ nhất của biểu thức 2 A x y xy y x 13 4 2 16 2019. + Chứng minh rằng: 3 2 n 3 chia hết cho 48 với mọi số nguyên lẻ n. + Cho tam giác ABC vuông tại A AB AC đường cao AH. Gọi D là điểm đối xứng của A qua H. Đường thẳng qua D song song với AB cắt BC và AC lần lượt ở M và N. a) Chứng minh tứ giác ABDM là hình thoi. b) Chứng minh AM vuông góc với CD. c) Gọi I là trung điểm của MC chứng minh rằng IN vuông góc HN.
Đề giao lưu HSG Toán 8 năm 2023 - 2024 phòng GDĐT Bá Thước - Thanh Hoá
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề giao lưu học sinh giỏi cấp huyện môn Toán 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Bá Thước, tỉnh Thanh Hoá; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề giao lưu HSG Toán 8 năm 2023 – 2024 phòng GD&ĐT Bá Thước – Thanh Hoá : + Cho ba số nguyên x, y, z thỏa mãn 22 2 xy z 2. Chứng minh rằng 2 2 x y chia hết cho 48. + Cho ∆ABC vuông tại A có 0 ABC 75 trên cạnh AC lấy 2 điểm E và P sao cho ABE EBP PBC. Gọi I là chân đường vuông góc hạ từ C xuống đường thẳng BP, đường thẳng CI cắt BE ở F. 1. Chứng minh: ∆ECF cân. 2. Trên tia đối tia EB lấy điểm K sao cho EK = BC, tính số đo các góc của ∆BCK. 3. Gọi H là hình chiếu vuông góc của C trên BK, D là trung điểm của đoạn CH, L là hình chiếu vuông góc của H trên BD. Chứng minh KL vuông góc với LC. + Cho các số a, b, c khác 0 và đôi một khác nhau thoả mãn.
Đề giao lưu HSG Toán 8 năm 2023 - 2024 phòng GDĐT Quảng Xương - Thanh Hoá
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề giao lưu học sinh giỏi môn Toán 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Quảng Xương, tỉnh Thanh Hoá; kỳ thi được diễn ra vào ngày 27 tháng 01 năm 2024. Trích dẫn Đề giao lưu HSG Toán 8 năm 2023 – 2024 phòng GD&ĐT Quảng Xương – Thanh Hoá : + Chọn ngẫu nhiên hai số nguyên dương nhỏ hơn 13. Tính xác suất để hai số được chọn là hai số nguyên tố trong đó có một số chẵn và một số lẻ. + Cho a là số nguyên dương và b là ước nguyên dương của 2a2. Chứng minh rằng: a2 + b không là số chính phương. + Cho tam giác ABC vuông cân tại A. Trên cạnh BC lấy điểm M bất kì. Kẻ ME vuông góc với AB tại E, MF vuông góc với AC tại F. Qua B kẻ đường thẳng (d1) song song với AC, qua C kẻ đường thẳng (d2) song song với AB. Gọi D là giao điểm của (d1) và (d2). 1. Chứng minh: tứ giác AEMF là hình chữ nhật và tổng EM/AC + FM/AB không phụ thuộc vào vị trí điểm M. 2. Gọi O là giao điểm của AM và EF, I là giao điểm của DE với BF. Chứng minh DE vuông góc với BF tại I và OI = OM. 3. Kí hiệu S1 là diện tích tam giác BEM; S2 là diện tích tam giác CFM. Xác định vị trí điểm M để S1, S2 lớn nhất.
Đề khảo sát HSG Toán 8 vòng 2 năm 2023 - 2024 phòng GDĐT Vũ Thư - Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát chất lượng học sinh giỏi môn Toán 8 cấp huyện vòng 2 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Vũ Thư, tỉnh Thái Bình; kỳ thi được diễn ra vào ngày 30 tháng 12 năm 2023. Trích dẫn Đề khảo sát HSG Toán 8 vòng 2 năm 2023 – 2024 phòng GD&ĐT Vũ Thư – Thái Bình : + Đa thức f(x) chia cho (x + 1) dư 2, chia cho (x – 2) dư 5, chia cho (x + 1)(x – 2) thì thương là 5x – 1 và còn dư. Tính f(4). + Cho tam giác ABC vuông tại A, kẻ phân giác trong AD (D thuộc BC), gọi M, N lần lượt là hình chiếu của D trên AB và AC. BN cắt DM tại E, CM cắt DN tại F, gọi K là giao điểm của BN và CM. a/ Tứ giác AMDN là hình gì? Vì sao? b/ Chứng minh: AB AC. c/ Chứng minh: AK vuông góc BC. + Cho tam giác ABC có AB + AC = 2BC. Gọi I là giao điểm ba đường phân giác trong, G là trọng tâm của ABC (I khác G). Chứng minh rằng IG // BC.