Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào 10 lần 2 năm 2023 2024 phòng GD ĐT Cửa Lò Nghệ An

Nội dung Đề thi thử Toán vào 10 lần 2 năm 2023 2024 phòng GD ĐT Cửa Lò Nghệ An Bản PDF Chào các thầy cô giáo và các em học sinh lớp 9, hôm nay Sytu xin giới thiệu đến bạn đề thi thử môn Toán vào lớp 10 THPT lần 2 năm học 2023-2024 của phòng Giáo dục và Đào tạo thị xã Cửa Lò, tỉnh Nghệ An. Đề thi này bao gồm đề thi, đáp án, lời giải chi tiết và hướng dẫn chấm điểm.

Để bắt đầu, hãy xem qua một số câu hỏi trong đề thi:
1. Trong tháng 5/2022, thị xã Cửa Lò và thị xã Sầm Sơn đã đón bao nhiêu lượt khách du lịch?
2. Một hộp phấn hình hộp chữ nhật có thể tích 200 cm3 chứa 20 viên phấn hình trụ. Tính phần không gian trong hộp phấn.
3. Chứng minh các tính chất của tam giác và đường tròn trong bài toán đã cho.

Với những câu hỏi thú vị và bổ ích như vậy, đề thi sẽ giúp các em rèn luyện kỹ năng Toán một cách hiệu quả. Hãy cùng học và giải quyết các bài toán thú vị này để chuẩn bị tốt cho kỳ thi sắp tới.

Nếu quý thầy cô và các em quan tâm, có thể tải file WORD để tham khảo đề thi và lời giải chi tiết. Hy vọng rằng đề thi sẽ giúp ích cho việc ôn tập và nâng cao kiến thức của các em. Chúc các em học tốt và đạt kết quả cao trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề thi thử Toán tuyển sinh lớp 10 năm 2024 - 2025 phòng GDĐT TP Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2024 – 2025 phòng Giáo dục và Đào tạo UBND thành phố Nam Định, tỉnh Nam Định; đề thi hình thức 20% trắc nghiệm khách quan + 80% tự luận, thời gian làm bài 120 phút, có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán tuyển sinh lớp 10 năm 2024 – 2025 phòng GD&ĐT TP Nam Định : + Cho tam giác ABC vuông tại A. Biết 0 AC cm ACB 3 30. Vẽ đường tròn tâm B bán kính BA cắt cạnh BC tại D. Tính diện tích phần mặt phẳng tô đậm ở hình vẽ bên. (Kết quả làm tròn đến chữ số thập phân thứ hai). + Cho tam giác ABC nhọn AB AC. Đường tròn O R đường kính BC cắt các cạnh AB AC; lần lượt tại E D. Các đường thẳng BD và CE cắt nhau tại I. Đường thẳng AI cắt BC tại H. a) Chứng minh tứ giác BHIE và CDIH là các tứ giác nội tiếp. b) Đường thẳng DH cắt đường thẳng CE tại M và cắt đường tròn O R tại điểm thứ hai là N (N khác D). Chứng minh NE AI và IE CM IM CE. + Một hình chữ nhật có chiều dài gấp đôi chiều rộng. Nếu giảm chiều dài 5m và tăng chiều rộng 5m thì được một hình vuông. Chu vi của hình chữ nhật ban đầu là?
Đề thi thử vào 10 chuyên môn Toán (chung) năm 2024 lần 3 trường chuyên ĐHSP Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử tuyển sinh vào lớp 10 THPT chuyên môn Toán (chung) năm 2024 lần 3 trường THPT chuyên ĐHSP Hà Nội, thành phố Hà Nội. Trích dẫn Đề thi thử vào 10 chuyên môn Toán (chung) năm 2024 lần 3 trường chuyên ĐHSP Hà Nội : + Một người gửi tiền vào ngân hàng với lãi suất 0,45%/tháng. Biết rằng, nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo. Người đó phải gửi số tiền ban đầu ít nhất bao nhiêu triệu đồng để số tiền lãi của tháng thứ hai không ít hơn 500 000 đồng? (làm tròn kết quả đến hàng đơn vị của triệu đồng). + Tìm tất cả các số thực m để hai đồ thị hàm số y = 2×2 và y = mx + 2 cắt nhau tại hai điểm phân biệt A(x1;y1) và B(x2;y2) thỏa mãn (y1 + 2)(y2 + 2) + 25x1x2 = 0. + Cho đường tròn (O;R) và dây cung BC cố định (BC < 2R). Điểm A chuyển động trên cung lớn BC sao cho AB < AC, tam giác ABC nhọn và không là tam giác cân. Các tiếp tuyến tại B và C của đường tròn (O;R) cắt nhau tại K. Đường thẳng qua điểm K song song với AB cắt cạnh AC tại I. Đoạn thẳng KI cắt đường tròn (O;R) tại D. Chứng minh rằng 4.1) Tứ giác KOIC nội tiếp một đường tròn. 4.2) ABC KOI. 4.3) Giá trị của biểu thức IA.IC + IO2 không phụ thuộc vào vị trí điểm A.
Đề thi thử Toán vào lớp 10 năm 2024 - 2025 phòng GDĐT Ngô Quyền - Hải Phòng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2024 – 2025 phòng Giáo dục và Đào tạo UBND quận Ngô Quyền, thành phố Hải Phòng; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán vào lớp 10 năm 2024 – 2025 phòng GD&ĐT Ngô Quyền – Hải Phòng : + Để thuận tiện cho việc kinh doanh, bác An thuê một cửa hàng với giá 10 triệu đồng một tháng. Trước khi sử dụng, bác An phải sửa chữa thêm hết số tiền là 20 triệu đồng. Gọi y triệu đồng là tổng số tiền thuê và tiền sửa chữa, x là số tháng thuê cửa hàng. a) Lập công thức tính y theo x b) Hỏi bác An thuê cửa hàng trong bốn năm rưỡi thì hết tổng số tiền là bao nhiêu? + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Quãng đường từ địa điểm A đến địa điểm B có chiều dài là 50(km). Cùng một lúc và trên cùng một quãng đường đó, bạn Nam đi xe máy từ địa điểm A đến địa điểm B, bạn Bắc đi ô tô từ địa điểm B đến địa điểm A, họ gặp nhau sau 30 phút. Tính vận tốc trung bình của mỗi bạn, biết rằng bạn Bắc đi nhanh hơn bạn Nam là10 (km/h)? + Theo đơn đặt hàng, một kỹ sư thiết kế chi tiết máy chất liệu bằng kim loại dạng hình nón bằng cách quay một vòng quanh cạnh AB của ABC vuông tại A (như hình vẽ bên). Tính thể tích của chi tiết kim loại hình nón đó? (lấy pi = 3,14, làm tròn đến chữ số thập phân thứ nhất).
Đề thi thử Toán (chung) vào 10 chuyên năm 2024 - 2025 phòng GDĐT TP Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán (chung) tuyển sinh vào lớp 10 THPT chuyên năm học 2024 – 2025 phòng Giáo dục và Đào tạo UBND thành phố Nam Định, tỉnh Nam Định; đề thi dành cho học sinh thi vào các lớp chuyên tự nhiên và chuyên xã hội; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán (chung) vào 10 chuyên năm 2024 – 2025 phòng GD&ĐT TP Nam Định : + Một chiếc bình thuỷ tinh hình trụ có chiều cao 30cm và đường kính đáy 20cm đựng đầy nước. Tính số lít nước đựng trong bình (coi rằng thành bình và đáy bình mỏng). + Cho nửa đường tròn O R đường kính BC A là điểm bất kì trên nửa đường tròn sao cho AB AC A khác C. Kẻ AH vuông góc với BC tại H. Gọi M N lần lượt là hình chiếu vuông góc của H trên AB AC. a) Chứng minh AB AM AC AN và tứ giác BCNM là tứ giác nội tiếp. b) Đường thẳng MN cắt nửa đường tròn O R tại các điểm E F (E thuộc cung AB nhỏ), cắt đoạn thẳng AO tại D. Chứng minh OA MN và AEH cân. c) Đường thẳng MN cắt đường thẳng BC tại I IA cắt nửa đường tròn O R tại điểm thứ hai là K (K khác A), KN cắt BC tại Q. Chứng minh 2 QH QC QI. + Tìm tất cả các giá trị của tham số m để đường thẳng y x m 2 1 cắt đường thẳng y x 2 3 tại điểm nằm trên trục hoành.