Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phương pháp dồn biến chứng minh bất đẳng thức - Phan Thành Việt

Tài liệu gồm 60 trang giới thiệu phương pháp dồn biến trong chứng minh bất đẳng thức do tác giả Phan Thành Việt biên soạn. Các nội dung có trong tài liệu : + Bất đẳng thức 3 biến với cực trị đạt được đối xứng + Dồn biến bằng kỹ thuật hàm số + Bất đẳng thức 3 biến với cực trị đạt được tại biên + Bất đẳng thức 4 biến + Dồn biến bằng hàm lồi + Dồn biến về giá trị trung bình + Định lý dồn biến tổng quát [ads]

Nguồn: toanmath.com

Đọc Sách

Các phương pháp chứng minh bất đẳng thức - Nguyễn Tất Thu
Tài liệu gồm 174 trang, được biên soạn bởi thầy giáo Nguyễn Tất Thu (giáo viên Toán trường THPT chuyên Lương Thế Vinh, tỉnh Đồng Nai), hướng dẫn các phương pháp chứng minh bất đẳng thức, giúp học sinh học tốt chương trình Đại số 10 chương 4: bất đẳng thức và bất phương trình và ôn thi chọn học sinh giỏi môn Toán bậc THPT. A. LÝ THUYẾT VÀ BÀI TẬP 1 CÁC BẤT ĐẲNG THỨC CỔ ĐIỂN. 1 Bất đẳng thức AM – GM. I. Bất đẳng thức AM – GM. II. Một số ví dụ áp dụng. III. Bài tập. 2 Bất đẳng thức Cauchy – Schwarz. I. Bất đẳng thức Cauchy-Schwarz dạng đa thức. II. Bất đẳng thức Cauchy-Schwarz dạng phân thức. III. Các ví dụ minh họa. IV. Bài tập. 3 Một số bất đẳng thức khác. I. Bất đẳng thức Schur. 1. Bất đẳng thức Schur. 2. Các trường hợp đặc biệt. 3. Bất đẳng thức Schur mở rộng. 4. Các ví dụ. II. Bất đẳng thức Holder. 1. Bất đẳng thức Holder. 2. Trường hợp đặc biệt. 3. Ví dụ minh họa. III. Bất đẳng thức Chebyshev. 1. Bất đẳng thức Chebyshev. 2. Ví dụ minh họa. IV. Bài tập. 4 Phương pháp quy nạp. I. Lý thuyết. II. Ví dụ minh họa. 5 Phương pháp phân tích bình phương SOS. I. Lý thuyết. 1. Một số tiêu chuẩn đánh giá. 2. Một số biểu diễn cơ sở. II. Các ví dụ. III. Bài tập. 6 Phương pháp dồn biến. I. Lý thuyết. II. Ví dụ minh họa. III. Bài tập. [ads] 2 CÁC PHƯƠNG PHÁP CHỨNG MINH BẤT ĐẲNG THỨC HIỆN ĐẠI. 1 Phương pháp p, q, r. I. Lý thuyết. 1. Bất đẳng thức Schur. 2. Một số biểu diễn đa thức đối xứng ba biến qua p, q, r. 3. Một số đánh giá giữa p, q, r. II. Một số ví dụ. III. Bài tập. 2 Phương pháp sử dụng tiếp tuyến và cát tuyến. I. Lý thuyết. 1. Hàm lồi – Dấu hiệu hàm lồi. 2. Bất đẳng thức tiếp tuyến – Bất đẳng thức cát tuyến. II. Các ví dụ minh họa. III. Bài tập. 3 MỘT SỐ CHUYÊN ĐỀ. 1 Ứng dụng điều kiện có nghiệm của phương trình bậc ba trong chứng minh bất đẳng thức. I. Lý thuyết. 1. Mở đầu. 2. Một số kết quả. II. Ví dụ minh họa. III. Bài tập. 2 Bài toán tìm hằng số tốt nhất trong bất đẳng thức. I. Lý thuyết. II. Ví dụ minh họa. III. Bài tập. B. ĐÁP SỐ VÀ HƯỚNG DẪN GIẢI 1 CÁC BẤT ĐẲNG THỨC CỔ ĐIỂN. 1 Bất đẳng thức AM-GM. 2 Bất đẳng thức Cauchy-Schwarz. 3 Một số bất đẳng thức khác. 2 MỘT SỐ PHƯƠNG PHÁP CHỨNG MINH BẤT ĐẲNG THỨC. 1 Phương pháp quy nạp. 2 Phương pháp phân tích bình phương SOS. 3 Phương pháp dồn biến. 4 Phương pháp p, q, r. 5 Phương pháp tiếp tuyến và cát tuyến. 3 MỘT SỐ CHUYÊN ĐỀ. 1 Ứng dụng đều kiện có nghiệm của phương trình bậc ba. 2 Bài toán tìm hằng số tốt nhất.
Áp dụng bất đẳng thức Bunhiacopxki chứng minh bất đẳng thức, tìm GTLN GTNN
Tài liệu gồm 84 trang, được trích từ cuốn sách Những Kỹ Năng Giải Toán Đặc Sắc Bất Đẳng Thức của các tác giả: Nguyễn Công Lợi, Đào Quốc Chung, Đào Quốc Dũng, Phạm Kim Chung (diễn đàn Toán THPT K2PI), hướng dẫn áp dụng bất đẳng thức Bunhiacopxki (tên gọi chính xác là bất đẳng thức Cauchy – Bunhiacopxki – Schwarz) chứng minh bất đẳng thức, tìm GTLN – GTNN (giá trị lớn nhất – giá trị nhỏ nhất). Khái quát nội dung tài liệu áp dụng bất đẳng thức Bunhiacopxki chứng minh bất đẳng thức, tìm GTLN – GTNN: A. KIẾN THỨC CẦN NHỚ 1. Giới thiệu bất đẳng thức Bunhiacopxki. 2. Các dạng biểu diễn của bất đẳng thức Bunhiacopxki. B. MỘT SỐ KỸ THUẬT SỬ DỤNG BẤT ĐẲNG THỨC BUNHIACOPXKI 1. Kỹ thuật chọn điểm rơi. Cũng tương tự như bất đẳng thức Cauchy, khi sử dụng bất đẳng thức Bunhiacopxki để chứng minh bất đẳng thức ta cần phải bảo toàn được dấu đẳng thức xẩy ra, điều này có nghĩa là ta cần phải xác định được điểm rơi của bài toán khi áp dụng bất đẳng thức Bunhiacopxki. 2. Kỹ thuật sử dụng bất đẳng thức Bunhiacopxki dạng cơ bản. Bất đẳng thức Bunhiacopxki dạng cơ bản là những bất đẳng thức đánh giá từ đại lượng (a1b1 + a2b2 + … + anbn)^2 về đại lượng (a1^2 + a2^2 + … + an^2)(b1^2 + b2^2 + … + bn^2) hoặc ngược lại. [ads] 3. Kỹ thuật sử dụng bất đẳng thức Bunhiacopxki dạng phân thức. Bất đẳng thức Bunhiacopxki dạng phân thức là bất đẳng thức có ứng dụng rộng rãi trong chứng minh các bài toán bất đẳng thức. Nó giải quyết được một lớp các bất đẳng thức chứa các đại lượng có dạng phân thức. 4. Kỹ thuật thêm bớt. Có những bất đẳng thức (hay biểu thức cần tìm GTLN, GTNN) nếu để nguyên dạng như đề bài cho đôi khi khó hoặc thậm chí không thể giải quyết bằng cách áp dụng bất đẳng thức Bunhiacopxki. Khi đó ta chịu khó biến đổi một số biểu thức bằng cách thêm bớt các số hay biểu thức phù hợp ta có thể vận dụng bất đẳng thức Bunhiacopxki một cách dễ dàng hơn. 5. Kỹ thuật đổi biến trong bất đẳng thức Bunhiacopxki. Có một số bất đẳng thức, nếu ta để nguyên dạng phát biểu của nó thì rất khó để phát hiện ra cách chứng minh. Tuy nhiên bằng một số phép đổi biến nho nhỏ ta có thể đưa chúng về dạng quan thuộc mà bất đẳng thức Bunhiacopxki có thể áp dụng được.
Áp dụng bất đẳng thức Cô-si chứng minh bất đẳng thức, tìm GTLN - GTNN
Tài liệu gồm 91 trang, được trích từ cuốn sách Những Kỹ Năng Giải Toán Đặc Sắc Bất Đẳng Thức của các tác giả: Nguyễn Công Lợi, Đào Quốc Chung, Đào Quốc Dũng, Phạm Kim Chung (diễn đàn Toán THPT K2PI), hướng dẫn áp dụng bất đẳng thức Cô-si (BĐT Cauchy, BĐT AM – GM, BĐT giữa trung bình cộng và trung bình nhân) chứng minh bất đẳng thức, tìm GTLN – GTNN (giá trị lớn nhất – giá trị nhỏ nhất). Khái quát nội dung tài liệu áp dụng bất đẳng thức Cô-si chứng minh bất đẳng thức, tìm GTLN – GTNN: A. KIẾN THỨC CẦN NHỚ 1. Giới thiệu bất đẳng thức Cauchy(Côsi). 2. Các dạng biểu diễn của bất đẳng thức Cauchy. B. MỘT SỐ KỸ THUẬT SỬ DỤNG BẤT ĐẲNG THỨC CAUCHY 1. Kỹ thuật chọn điểm rơi trong đánh giá từ trung bình cộng sang trung bình nhân. Đánh giá từ trung bình cộng sang trung bình nhân thực chất đánh giá bất đẳng thức Cauchy theo chiều từ phía trái sang phía phải. 2. Kỹ thuật chọn điểm rơi trong đánh giá từ trung bình nhân sang trung bình cộng. Đánh giá từ trung bình nhân sang trung bình cộng chính là đánh giá bất đẳng thức Cauchy theo chiều từ phía phải sang phía trái. Trong chuỗi đánh giá đó ta cũng cần phải bảo toàn dấu đẳng thức xảy ra. 3. Kỹ thuật ghép cặp trong bất đẳng thức Cauchy. Trong nhiều bài toán mà biểu thức ở hai vế tương đối phức tạp, việc chứng minh trực tiếp trở nên khó khăn thì ta có thể sử dụng kỹ thuật “Ghép cặp” để bài toán trở nên đơn giản. [ads] 4. Kỹ thuật thêm bớt. Nếu ở các kỹ thuật trên, ta được rèn luyện thói quen định hướng dựa vào bề ngoài của một bài toán. Thì từ đây ta bắt đầu gặp những lớp bất đẳng thức phong phú hơn – những bất đẳng thức mà lời giải cho chúng luôn đòi hỏi một tầm nhìn bao quát cũng như sự đột phá ý tưởng. Kỹ thuật thêm bớt là một minh chứng rõ ràng nhất cho lối tư duy sử dụng những “yếu tố bên ngoài” trong việc giải quyết vấn đề. 5. Kỹ thuật Cauchy ngược dấu. Trong quá trình tìm lời giải cho một bài toán bất đẳng thức, một sai lầm thường gặp đó là sau một loạt các đánh giá ta thu được một bất đẳng thức ngược chiều. Điều này làm không ít người cảm thấy nản lòng. Lúc này nếu ta bình tĩnh suy nghĩ một chút thì thấy với đánh giá ngược chiều bằng cách nào đó ta thêm vào trước một dấu âm thì lập tức đánh giá đó sẽ cùng chiều. Sử dụng ý tưởng tương tự như kỹ thuật thêm bớt, thậm chí có phần khéo léo hơn, kỹ thuật Cauchy ngược dấu đã chứng tỏ sự đột phá đơn giản nhưng đem lại hiệu quả bất ngờ đến ngạc nhiên khi giải quyết lớp bất đẳng thức hoán vị chặt và khó. 6. Kỹ thuật đổi biến số. Trong bất đẳng thức, có một quy luật chung, đó là “Trong một dạng cụ thể, thì những bất đẳng thức càng nhiều biến càng khó”. Điều này cũng đồng nghĩa với việc khẳng định “Bài toán sẽ trở nên đơn giản hơn nếu ta đưa được một bất đẳng thức nhiều biến về dạng ít biến hơn”. Kỹ thuật đổi biến chính là một công cụ hữu ích để thực hiện ý tưởng này.
Các dạng toán trắc nghiệm bất đẳng thức và bất phương trình
Tài liệu gồm 147 trang được biên soạn bởi thầy Nguyễn Bảo Vương, tuyển chọn các câu hỏi và bài tập trắc nghiệm bất đẳng thức và bất phương trình thường gặp trong chương trình Đại số 10 chương 4, các bài toán được phân dạng, có đáp án và lời giải chi tiết. Khái quát nội dung tài liệu các dạng toán trắc nghiệm bất đẳng thức và bất phương trình: Chủ đề 1 . Bất đẳng thức. Dạng 1. Tính chất của bất đẳng thức. Dạng 2. Bất đẳng thức Cosi và ứng dụng. Chủ đề 2 . Bất phương trình và hệ bất phương trình. Dạng 1. Tìm điều kiện xác định của bất phương trình. Dạng 2. Bất phương trình và hệ bất phương trình tương đương. Dạng 3. Sử dụng các phép biến đổi tương đương để giải bất phương trình một ẩn. Dạng 4. Sử dụng các phép biến đổi tương đương giải hệ bất phương trình một ẩn. Dạng 5. Bất phương trình, hệ bất phương trình chứa tham số. Chủ đề 3 . Dấu nhị thức bậc nhất. Dạng 1. Dấu nhị thức bậc nhất. Dạng 2. Giải bất phương trình tích. Dạng 3. Giải bất phương trình chứa ẩn ở mẫu. Dạng 4. Giải bất phương trình chứa dấu giá trị tuyệt đối. [ads] Chủ đề 4 . Hệ bất phương trình bậc nhất hai ẩn. Dạng 1. Tìm nghiệm bất phương trình bậc nhất hai ẩn. Dạng 2. Tìm miền nghiệm của hệ bất phương trình bậc nhất hai ẩn. Dạng 3. Tìm giá trị nhỏ nhất và giá trị lớn nhất. Dạng 4. Áp dụng giải bài toán thực tế. Chủ đề 5 . Dấu tam thức bậc hai. Dạng 1. Tam thức bậc hai. + Xét dấu tam thức bậc hai. + Giải bất phương trình bậc hai và một số bài toán liên quan. Dạng 2. Bất phương trình tích. Dạng 3. Bất phương trình chứa ẩn ở mẫu. Dạng 4. Hệ bất phương trình bậc hai và các bài toán liên quan. Dạng 5. Bài toán chứa tham số. + Tìm m để phương trình có n nghiệm. + Tìm m để phương trình bậc 2 có nghiệm thỏa mãn điều kiện cho trước. + Tìm m để bất phương trình thỏa mãn điều kiện cho trước. + Tìm m để hệ bất phương trình bậc hai thỏa mãn điều kiện cho trước. Dạng 6. Bất phương trình chứa dấu giá trị tuyệt đối và một số bài toán liên quan. Dạng 7. Bất phương trình chứa căn và một số bài toán liên quan.