Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn học sinh giỏi thành phố Toán 12 năm 2021 - 2022 sở GDĐT Hải Phòng

Thứ Ba ngày 18 tháng 01 năm 2022, sở Giáo dục và Đào tạo Hải Phòng tổ chức kỳ thi chọn học sinh giỏi cấp thành phố lớp 12 môn Toán năm học 2021 – 2022. Đề chọn học sinh giỏi thành phố Toán 12 năm 2021 – 2022 sở GD&ĐT Hải Phòng gồm 01 trang với 08 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút (không kể thời gian phát đề). Trích dẫn đề chọn học sinh giỏi thành phố Toán 12 năm 2021 – 2022 sở GD&ĐT Hải Phòng : + Có 15 người xếp thành một hàng dọc (vị trí của mỗi người trong hàng là cố định). Chọn ra 4 người trong hàng. Tính xác suất để 4 người được chọn không có hai người nào đứng cạnh nhau. + Cho hình lăng trụ đứng ABCD A B C D có đáy ABCD là hình thang cân, AD song song với BC, AB BC CD a AD a 2. Góc giữa hai mặt phẳng ACD và ABCD bằng 0 45. a) Tính khoảng cách từ B đến mặt phẳng A CD. b) Gọi P là mặt phẳng đi qua B và vuông góc với đường thẳng A C. Mặt phẳng P chia khối lăng trụ đã cho thành hai khối đa diện. Tính thể tích khối đa diện chứa đỉnh A. + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC không có góc nào tù, nội tiếp đường tròn tâm I. Gọi D là chân đường phân giác trong của góc A D BC. Đường thẳng đi qua D và vuông góc với đường thẳng AI cắt đường thẳng AC tại điểm E. Tìm tọa độ các điểm A và C biết rằng A có tung độ âm và 1 5 0 1 1 0 2 B I E.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi cấp tỉnh Toán 12 năm 2023 - 2024 sở GDĐT Bắc Giang
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi văn hóa cấp tỉnh môn Toán 12 năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Bắc Giang; kỳ thi được diễn ra vào ngày 18 tháng 01 năm 2024; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán 12 năm 2023 – 2024 sở GD&ĐT Bắc Giang : + Có hai hộp đựng các viên bi, trong mỗi hộp chỉ có các viên bi màu đỏ và màu xanh. Tổng số viên bi của hai hộp là 26. Chọn ngẫu nhiên từ mỗi hộp ra 1 viên bi. Biết xác suất để chọn được hai viên bi màu xanh là 91 160. Tính xác suất để chọn được 2 viên bi màu đỏ. + Trong không gian với hệ tọa độ Oxyz cho điểm A(0;1;2) mặt phẳng (α): 0 xyz và 2 Sx y z 3 1 2 16. Gọi (P) là mặt phẳng đi qua A, vuông góc với (α) và đồng thời (P) cắt mặt cầu (S) theo giao tuyến là một đường tròn có bán kính nhỏ nhất. Biết phương trình tổng quát của (P) là ax by cz 1 0. Tính tổng abc. + Cho hàm số 3 2 yx 4 5 có đồ thị (C) và điểm M (-1;-2). Gọi S là tập hợp tất cả các giá trị của tham số m để đường thẳng y mx m cắt (C) tại ba điểm phân biệt A B C (1;0) (B nằm giữa A và C) sao cho hiệu diện tích của hai tam giác MAC và MAB bằng 5. Tổng tất cả các phần tử của S bằng?
Đề học sinh giỏi cấp tỉnh Toán 12 năm 2023 - 2024 sở GDĐT Kon Tum
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 12 năm học 2023 – 2024 sở Giáo dục và Đào tạo UBND tỉnh Kon Tum; kỳ thi được diễn ra vào ngày 26 tháng 01 năm 2024; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán 12 năm 2023 – 2024 sở GD&ĐT Kon Tum : + Chứng tỏ rằng đồ thị hàm số 3 2 yx x m 3 2 luôn có hai điểm cực trị và khoảng cách giữa hai điểm cực trị đó không phụ thuộc vào tham số m. + Điền ngẫu nhiên 10 số tự nhiên đầu tiên 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 vào 10 ô vuông trong bảng ở hình vẽ bên dưới (mỗi ô vuông điền đúng một số). Tính xác suất để ba ô vuông liền kề nhau bất kì có tổng ba số ghi trong ba ô vuông đó chia hết cho 3. + Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a 60o ABC. Biết SA SB SC góc hợp bởi đường thẳng SD và mặt phẳng (ABCD) là 45o. 1. Gọi N là điểm trên cạnh SD. Tìm vị trí của điểm N để đường thẳng AN hợp với mặt phẳng (ABCD) một góc 45o. 2. Gọi M là trung điểm AB, G là trọng tâm tam giác ∆SCD. Tính khoảng cách giữa hai đường thẳng AG CM theo a.
Đề học sinh giỏi Toán THPT cấp tỉnh năm 2023 - 2024 sở GDĐT Hưng Yên
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán THPT cấp tỉnh năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Hưng Yên. Trích dẫn Đề học sinh giỏi Toán THPT cấp tỉnh năm 2023 – 2024 sở GD&ĐT Hưng Yên : + Cho hàm số y = (x + 1)/(x – 3) có đồ thị là (C). Viết phương trình tiếp tuyến của đồ thị (C) biết tiếp tuyến cắt các trục tọa độ Ox, Oy lần lượt tại hai điểm phân biệt A và B sao cho OB = 4OA. + Cho mặt cầu (S) tâm O và các điểm A, B, C nằm trên mặt cầu (S) sao cho AB = 6, AC = 8, BC = 10 và khoảng cách từ O đến mặt phẳng (ABC) bằng 11. Tính thể tích của khối cầu (S). + Cho hình lăng trụ ABC.A’B’C’ có đáy là tam giác đều. Hình chiếu vuông góc của A trên (ABC) là trung điểm của BC. Mặt phẳng (P) vuông góc với các cạnh bên và cắt các cạnh bên AA’, BB’, CC’ của hình lăng trụ lần lượt tại I, J, K. Biết góc giữa mặt phẳng (ABB’A’) và mặt phẳng (BCC’B’) bằng 30° và diện tích tam giác IJK bằng 3. Tính khoảng cách giữa CC’ và A’B.
Đề học sinh giỏi cấp tỉnh Toán 12 năm 2023 - 2024 sở GDĐT Lâm Đồng
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 12 THPT & GDTX năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Lâm Đồng; kỳ thi được diễn ra vào sáng thứ Sáu ngày 26 tháng 01 năm 2024. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán 12 năm 2023 – 2024 sở GD&ĐT Lâm Đồng : + Cho tập hợp A = {1; 2; 3; …; 20}. Chọn ngẫu nhiên 3 phần tử của A. Tính xác suất để 3 phần tử được chọn lập thành cấp số cộng. + Cho hình vuông H1 có cạnh bằng a (a > 0). Người ta chia mỗi cạnh hình vuông H1 thành ba phần bằng nhau và nối các điểm chia một cách thích hợp để có hình vuông H2. Từ hình vuông H2 tiếp tục làm như trên ta nhận được hình vuông H3. Lặp lại cách chia như trên ta được dãy các hình vuông H1, H2, H3, …, Hn, … (tham khảo hình vẽ ở bên). Gọi S là diện tích của hình vuông Hk (k thuộc {1; 2; 3; …; n; …}). Đặt T = S1 + S2 + S3 + … + Sn + …. Tìm a biết T = 16. + Từ một tấm tôn hình vuông có cạnh bằng 12(dm) người ta cắt bỏ các tam giác vuông cân tạo thành hình tô đậm như hình vẽ ở bên. Sau đó người ta gập lại và hàn thành hình hộp chữ nhật (H) không nắp. Tính thể tích nước tối đa mà khối hộp chữ nhật (H) có thể chứa được.