Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn học sinh giỏi lớp 8 môn Toán năm 2020 2021 phòng GD ĐT Bắc Ninh

Nội dung Đề chọn học sinh giỏi lớp 8 môn Toán năm 2020 2021 phòng GD ĐT Bắc Ninh Bản PDF - Nội dung bài viết Đề chọn học sinh giỏi Toán lớp 8 năm 2020 - 2021 phòng GD&ĐT Bắc Ninh Đề chọn học sinh giỏi Toán lớp 8 năm 2020 - 2021 phòng GD&ĐT Bắc Ninh Ngày 11 tháng 01 năm 2021, phòng Giáo dục và Đào tạo thành phố Bắc Ninh, tỉnh Bắc Ninh đã tổ chức kì thi chọn học sinh giỏi (HSG) cấp thành phố môn Toán lớp 8 năm học 2020 - 2021. Đề chọn học sinh giỏi Toán lớp 8 năm 2020 - 2021 phòng GD&ĐT Bắc Ninh bao gồm 1 trang với 5 bài toán dạng tự luận. Thời gian làm bài thi là 150 phút. Trích dẫn đề chọn học sinh giỏi Toán lớp 8 năm 2020 - 2021 phòng GD&ĐT Bắc Ninh: Tìm dư trong phép chia đa thức f(x) cho x + 1 và x^2 + 1. Tìm các số nguyên x, y thỏa mãn phương trình 5x + 53 = 2xy + 8y^2. Chứng minh một số tính chất của hình vuông ABCD và tam giác BKC. Trên đây là phần đề chọn học sinh giỏi Toán lớp 8 năm 2020 - 2021 phòng GD&ĐT Bắc Ninh. Các bài toán yêu cầu sự tư duy logic, khả năng giải quyết vấn đề và kiến thức sâu rộng về môn Toán. Hãy thử sức và nỗ lực để vượt qua thách thức này!

Nguồn: sytu.vn

Đọc Sách

Đề chọn đội tuyển Toán 8 năm 2022 - 2023 hệ thống GD Archimedes School - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn đội tuyển học sinh giỏi môn Toán 8 năm học 2022 – 2023 hệ thống giáo dục Archimedes School, thành phố Hà Nội; đề thi gồm 01 trang với 08 bài toán dạng tự luận, thời gian học sinh làm bài thi là 135 phút. Trích dẫn đề chọn đội tuyển Toán 8 năm 2022 – 2023 hệ thống GD Archimedes School – Hà Nội : + Cho các số nguyên dương a, b, c, d thỏa mãn điều kiện ab = cd. Chứng minh rằng (a + c)2 + (b + d)2 không thể là tích của ba số nguyên tố phân biệt. + Cho tam giác ABC cân tại A, có BC < BA. Gọi H là giao điểm của các đường cao BE và CF của tam giác ABC. a) Chứng minh tứ giác BFEC là hình thang cân. b) Lấy điểm M thuộc đoạn thẳng EF (M khác F và MF < ME). Đường trung trực của đoạn thẳng MF cắt đoạn thẳng AF tại điểm I. Đường trung trực của đoạn thẳng ME cắt đoạn thẳng AE tại điểm K. Gọi O là trung điểm của đoạn thẳng AH. Chứng minh rằng OI = OK. c) Gọi N là giao điểm của các đường thẳng IK và CF. Chứng minh rằng đường thẳng MN vuông góc với đường thẳng HK. + Trên bàn có 269 thẻ bài màu đỏ, 269 thẻ bài màu xanh và 269 thẻ bài màu tím. Mỗi bước, thầy Cẩn chọn ba thẻ bài nào đó cùng màu ra khỏi bàn và thêm vào bàn một thẻ bài khác màu. Cụ thể, nếu ba thẻ bài thầy Cẩn lấy ra khỏi bàn là màu đỏ thì thầy sẽ thêm vào bàn một thẻ bài màu xanh; nếu ba thẻ bài thầy Cẩn lấy ra khỏi bàn là màu xanh thì thầy sẽ thêm vào bàn một thẻ bài màu tím; còn nếu ba thẻ bài thầy Cẩn lấy ra khỏi bàn là màu tím thì thầy sẽ thêm vào bàn một thẻ bài màu đỏ. Thầy Cẩn sẽ thực hiện quá trình làm sao để trên bàn còn lại mỗi màu không quá hai thẻ bài. Hỏi khi đó trên bàn có bao nhiêu thẻ bài màu đỏ, bao nhiêu thẻ bài màu xanh, bao nhiêu thẻ bài màu tím?
Tuyển tập 50 đề ôn thi chọn học sinh giỏi môn Toán lớp 8 có lời giải
Tài liệu gồm 354 trang, tuyển tập 50 đề ôn thi chọn học sinh giỏi môn Toán lớp 8 có đáp án và lời giải chi tiết, giúp học sinh lớp 8 ôn tập để chuẩn bị cho kỳ thi chọn HSG Toán 8 cấp trường, cấp quận / huyện, cấp tỉnh / thành phố.
Đề học sinh giỏi Toán 8 năm 2021 - 2022 phòng GDĐT Hương Khê - Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp huyện môn Toán 8 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Hương Khê, tỉnh Hà Tĩnh; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi Toán 8 năm 2021 – 2022 phòng GD&ĐT Hương Khê – Hà Tĩnh : + Ông Bảo đã thu lãi 400 triệu đồng (chưa trừ tiền thuế), khi mua đất đầu tư. Khi ông mua, mỗi m2 đất có giá 1 triệu đồng, nhưng khi bán, có giá gấp 5 lần. Hỏi miếng đất ông Bảo đầu tư, có diện tích bằng bao nhiêu m2? + Cô Hân có nuôi 80 con gồm gà trống, gà mái và vịt. Số gà mái gấp ba lần số gà trống. 60% số gia cầm này là vịt. Vậy có bao nhiêu con gà mái? + Cho tam giác ABC nhọn, các đường cao AD, BE, CF cắt nhau tại H. a) Chứng minh tam giác AEB đồng dạng với tam giác AFC b) Chứng minh DEC AEF c) Gọi I là giao điểm của FD và BE. Chứng minh HI.BE = HE.BI.
Đề học sinh giỏi Toán 8 năm 2021 - 2022 phòng GDĐT Hà Đông - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi giao lưu học sinh giỏi môn Toán 8 năm học 2021 – 2022 phòng Giáo dục và Đào tạo quận Hà Đông, thành phố Hà Nội. Trích dẫn đề học sinh giỏi Toán 8 năm 2021 – 2022 phòng GD&ĐT Hà Đông – Hà Nội : + Cho các số dương a, b, c thỏa mãn a + b + c = 2022. Tìm giá trị lớn nhất của biểu thức P. + Cho tam giác ABC vuông tại A (AC > AB). Vẽ đường cao AH (H thuộc BC). Trên tia đối của tia BC lấy điểm K sao cho KH = HA. Qua K kẻ đường thắng song song với AH, cắt đường thẳng AC tại P. 1) Chứng minh AKC đồng dạng BPC. 2) Gọi Q là trung điểm của BP. Chứng minh BP ВС. 3) Tia AQ cắt BC tại I. Chứng minh: HB АН ВС IB. + Có 5 điểm nằm trong một hình vuông cạnh a = 36,7 (đơn vị dài). Chứng minh rằng tồn tại một điểm nằm trong hình vuông mà khoảng cách từ điểm đó đến 5 điểm nói trên đều lớn hơn 10.