Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn học sinh giỏi lớp 11 môn Toán năm 2019 2020 sở GD ĐT Thái Nguyên

Nội dung Đề thi chọn học sinh giỏi lớp 11 môn Toán năm 2019 2020 sở GD ĐT Thái Nguyên Bản PDF Thứ Sáu ngày 29 tháng 05 năm 2020, sở Giáo dục và Đào tạo tỉnh Thái Nguyên tổ chức kỳ thi chọn học sinh giỏi (HSG) cấp tỉnh môn Toán lớp 11 năm học 2019 – 2020. Đề thi chọn học sinh giỏi Toán lớp 11 năm 2019 – 2020 sở GD&ĐT Thái Nguyên gồm 01 trang với 06 bài toán tự luận, thời gian làm bài 150 phút. Trích dẫn đề thi chọn học sinh giỏi Toán lớp 11 năm 2019 – 2020 sở GD&ĐT Thái Nguyên : + Cho tam giác ABC có ba góc nhọn (AB < BC < AC) nội tiếp đường tròn (O;R). Vẽ đường tròn tâm O’ lần lượt tiếp xúc với các cạnh BC, AC tại D, E và tiếp xúc trong với đường tròn (O;R) tại T. Đường thẳng TD cắt đường tròn (O;R) tại K (K khác T). Gọi I là tâm đường tròn nội tiếp tam giác ABC. Chứng minh KC = KB và ba điểm D, I, E thẳng hàng. [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. SA vuông góc với mặt phẳng đáy và SA = 2a. Mặt phẳng (P) chứa BC và cắt các cạnh SA, SD lần lượt tại M, N. Góc giữa đường thẳng AC và (P) bằng 30 độ. Tính diện tích thiết diện tạo bởi (P) và hình chóp S.ABCD. + Cho tập hợp X = {1;2;3;4;…;3^n}. Chứng minh rằng, với mọi số tự nhiên n ≥ 2 luôn tồn tại tập con M của tập hợp X sao cho tập con M có 2n phần tử và không có ba phần tử nào lập thành một cấp số cộng.

Nguồn: sytu.vn

Đọc Sách

Đề HSG lớp 11 môn Toán cấp trường năm 2019 2020 trường Nguyễn Đăng Đạo Bắc Ninh
Nội dung Đề HSG lớp 11 môn Toán cấp trường năm 2019 2020 trường Nguyễn Đăng Đạo Bắc Ninh Bản PDF Nhằm kiểm tra khảo sát chất lượng đội tuyển học sinh giỏi Toán lớp 11, vừa qua, trường THPT Nguyễn Đăng Đạo, tỉnh Bắc Ninh đã tổ chức kỳ thi chọn học sinh giỏi cấp trường môn thi Toán lớp 11 năm học 2019 – 2020. Đề HSG Toán lớp 11 cấp trường năm 2019 – 2020 trường Nguyễn Đăng Đạo – Bắc Ninh gồm có 01 trang với 06 bài toán tự luận, thời gian làm bài 150 phút, đề thi có đáp số và lời giải chi tiết. Trích dẫn đề HSG Toán lớp 11 cấp trường năm 2019 – 2020 trường Nguyễn Đăng Đạo – Bắc Ninh : + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(2;3). Các điểm I (6;6), J(4;5) lần lượt là tâm đường tròn ngoại tiếp và tâm đường tròn nội tiếp tam giác ABC. Tìm tọa độ các đỉnh B và C biết hoành độ điểm B lớn hơn hoành độ điểm C. [ads] + Có hai cái hộp đựng tất cả 15 viên bi, các viên bi chỉ có 2 màu đen và trắng. Lấy ngẫu nhiên từ mỗi hộp 1 viên bi. Biết số bi ở hộp 1 nhiều hơn hộp 2, số bi đen ở hộp 1 nhiều hơn số bi đen ở hộp 2 và xác suất để lấy được 2 viên đen là 5/28. Tính xác suất để lấy được 2 viên trắng. + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a, AD = b, cạnh bên SA vuông góc với đáy. a) Gọi I, J lần lượt là trung điểm của SB và CD. Biết đường thẳng IJ tạo với mặt phẳng (ABCD) một góc 60 độ. Tính độ dài đoạn thẳng SA. b) (α) là mặt phẳng thay đổi qua AB và cắt các cạnh SC, SD lần lượt tại M và N. Gọi K là giao điểm của hai đường thẳng AN và BM. Chứng minh rằng biểu thức T = AB/MN – BC/SK có giá trị không đổi. File WORD (dành cho quý thầy, cô):
Đề Olympic lớp 11 môn Toán năm 2019 cụm trường THPT Hà Đông – Hoài Đức – Hà Nội
Nội dung Đề Olympic lớp 11 môn Toán năm 2019 cụm trường THPT Hà Đông – Hoài Đức – Hà Nội Bản PDF Sytu giới thiệu đến bạn đọc đề thi Olympic Toán lớp 11 năm học 2018 – 2019 cụm trường THPT Hà Đông – Hoài Đức – Hà Nội, đề gồm 01 trang với 05 bài toán dạng tự luận, thang điểm bài thi là 20 điểm, học sinh có 150 phút để làm bài thi. Trích dẫn đề Olympic Toán lớp 11 năm 2019 cụm trường THPT Hà Đông – Hoài Đức – Hà Nội : + Trong một hộp kín đựng 100 tấm thẻ như nhau được đánh số từ 1 đến 100. Lấy ngẫu nhiên ba tấm thẻ trong hộp. Tính xác suất để lấy được ba tấm thẻ mà ba số ghi trên ba tấm thẻ đó lập thành một cấp số cộng. [ads] + Cho hình hộp ABCD.A’B’C’D’ có tất cả các cạnh bằng nhau. Điểm M di động trên cạnh AB, điểm N di động trên cạnh A’D’ sao cho A’N = 2AM. Gọi (a) là mặt phẳng chứa MN và song song với AC. Dựng thiết diện của hình hộp bởi (a) và chứng minh rằng (a) luôn chứa một đường thẳng cố định. + Cho tứ diện ABCD. Chứng minh rằng: (AB + CD)^2 + (AD + BC)^2 > (AC + BD)?.