Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào lớp 10 năm 2023 - 2024 phòng GDĐT thành phố Vinh - Nghệ An

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2023 – 2024 phòng Giáo dục và Đào tạo thành phố Vinh, tỉnh Nghệ An; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán vào lớp 10 năm 2023 – 2024 phòng GD&ĐT thành phố Vinh – Nghệ An : + Taxi Xanh SM là hãng taxi thuần điện đầu tiên tại Việt Nam, cung cấp dịch vụ vận tải hành khách hoàn toàn bằng xe điện VinFast. Đây là thế hệ taxi không mùi xăng dầu, không tiếng ồn động cơ, tốt cho sức khỏe người dùng và bảo vệ môi trường, đồng thời được trang bị nhiều tính năng giải trí thông minh, giúp hành khách có trải nghiệm thú vị trên mỗi hành trình. Giai đoạn đầu, Taxi Xanh SM đưa vào vận hành 500 xe VF e34 và 100 xe VF 8. Giá cước của xe VF e34 tại một thời điểm được tính như sau: Mức 1: giá mở cửa cho 1km đầu tiên là 20 000 đồng; Mức 2: Từ km thứ 2 đến hết km thứ 25; Mức 3: Từ km thứ 26 trở đi. Cô Thủy đi 28 km hết 429500 đồng còn chú Tuấn đi 33 km hết 492000 đồng (hai cô chú cùng đi loại xe VF e34 tại thời điểm giá cước như trên). Hỏi giá cước của xe VF e34 tại thời điểm trên ở mức 2 và mức 3 là bao nhiêu? + Hưởng ứng cuộc vận động “Nói không với rác thải nhựa dùng một lần”, lớp 9A của một trường THCS sử dụng giấy kraft nguyên sinh để làm cốc đựng nước uống (không có nắp) trong buổi liên hoan cuối năm. Cốc giấy có dạng hình trụ có đường kính đáy 6cm và chiều cao 7cm. Tính số m2 giấy để làm được 100 chiếc cốc? (Coi các mép dán không đáng kể, lấy pi ~ 3,14 và làm tròn kết quả đến chữ số thập phân thứ 2). + Cho tam giác ABC vuông tại A. Đường tròn tâm O đường kính AB cắt đoạn BC và OC lần lượt tại D và I. Gọi H là hình chiếu của A trên OC; AH cắt BC tại M. a. Chứng minh tứ giác ACDH nội tiếp. b. Chứng minh HM là tia phân giác của góc BHD. c. Chứng minh MD.BC = MB.CD. d. Gọi K là trung điểm của BD, E là giao điểm của AM và OK, J là giao điểm của IM và (O) (J khác I). Chứng minh hai đường thẳng OC và EJ cắt nhau tại điểm nằm trên (O).

Nguồn: toanmath.com

Đọc Sách

Đề thi thử tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán trường THPT Đào Duy Từ - Thanh Hóa
Đề thi thử tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán trường THPT Đào Duy Từ – Thanh Hóa gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho đoạn thẳng AB và C là một điểm nằm giữa A và B. Trên cùng một nửa mặt phẳng bờ AB vẽ hai tia Ax  By vuông góc với AB. Trên tia Ax lấy một điểm I (I khác A ), đường thẳng vuông góc với tia CI tại C cắt tia By tại K. Đường tròn đường kính IC cắt IK tại điểm thứ hai P 1) Chứng minh bốn điểm C, P, K, B cùng thuộc một đường tròn 2) Chứng minh AI.BK = AC.BC 3) Cho biết A,B,I cố định. Xác định vị trí điểm C trên đoạn thẳng AB sao cho diện tích hình thang vuông ABKI là lớn nhất [ads] + Giải phương trình (a – 1)x^2 – 4x + 3 = 0 trong mỗi trường hợp sau: a) Khi a = 1 b) Khi a = 2
Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Đồng Nai
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Đồng Nai gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Một đội xe dự định chở 120 tấn hàng. Để tăng sự an toàn nên đến khi thực hiện, đội xe được bổ sung thêm 4 chiếc xe, lúc này số tấn hàng của mỗi xe chở ít hơn số tấn hàng của mỗi xe dự định chở là 1 tấn. Tính số tấn hàng của mỗi xe dự định chở, biết số tấn hàng của mỗi xe chở khi dự định là bằng nhau, khi thực hiện là bằng nhau. + Cho tam giác ABC có ba đường cao AD, BE, CF cắt nhau tại H. Biết ba góc CAB, ABC, BCA đều là góc nhọn. Gọi M là trung điểm của đoạn AH 1) Chứng minh tứ giác AEHF nội tiếp đường tròn 2) Chứng minh CE.CA = CD.CB 3) Chứng minh EM là tiếp tuyến của đường tròn ngoại tiếp tam giác BEF 4) Gọi I và J tương ứng là tâm đường tròn nội tiếp hai tam giác BDF và EDC. Chứng minh 2 góc DIJ và DFC bằng nhau [ads] + Cho hai hàm số y = -1/2x^2 và y = x – 4 có đồ thị lần lượt là (P) và (d) 1) Vẽ hai đồ thị (P) và (d) trên cùng một mặt phẳng tọa độ 2) Tìm tọa độ giao điểm của hai đồ thị (P) và (d)
Đề thi tuyển sinh lớp 10 năm học 2017 - 2018 môn Toán trường THPT Chuyên ĐH Sư phạm Hà Nội (Vòng 2)
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán trường THPT Chuyên ĐH Sư phạm Hà Nội (Vòng 2 – Dùng riêng cho học sinh chuyên Toán và chuyên Tin) gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho đường tròn (O) bán kính R và một điểm M nằm ngoài (O). Kẻ hai tiếp tuyến MA, MB tới đường tròn (O) (A, B là hai tiếp điểm). Trên đoạn thẳng AB lấy điểm C (C khác A, C khác B). Gọi I; K là trung điểm MA, MC. Đường thẳng KA cắt đường tròn (O) tại điểm thứ hai D 1. Chứng minh KO^2 – KM^2 = R^2 2. Chứng minh tứ giác BCDM là tứ giác nội tiếp 3. Gọi E là giao điểm thứ hai của đường thẳng MD với đường tròn (O) và N là trung điểm KE đường thẳng KE cắt đường tròn (O) tại điểm thứ hai F. Chứng minh rằng bốn điểm I, A, N, F cùng nằm trên một đường tròn [ads] + Xét hình bên: Ta viết các số 1, 2, 3, 4 … 9 vào vị trí của 9 điểm trong hình vẽ bên sao cho mỗi số chỉ xuất hiện đúng một lần và tổng ba số trên một cạnh của tam giác bằng 18. Hai cách viết được gọi là như nhau nếu bộ số viết ở các điểm (A;B;C;D;E;F;G;H;K) của mỗi cách là trùng nhau. Hỏi có bao nhiêu cách viết phân biệt? Tại sao?
Đề thi tuyển sinh lớp 10 năm học 2017 - 2018 môn Toán trường THPT Chuyên ĐH Sư phạm Hà Nội (Vòng 1)
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán trường THPT Chuyên ĐH Sư phạm Hà Nội (Vòng 1 – Dùng cho mọi thí thi vào trường chuyên) gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Anh nam đi xe đạp từ A đến C. Trên quãng đường AB ban đầu (B nằm giữa A và C). Anh Nam đi với vận tốc không đổi a (km/h) và thời gian đi từ A đến B là 1,5 giờ. Trên quãng đường BC còn lại anh Nam đi chậm dần đều với vận tốc tại thời điểm t (tính bằng giờ) kể từ B là v = -8t + a (km/h). Quãng đường đi được từ B đến thời điểm t đó là S = -4t^2 + at. Tính quãng đường AB biết rằng đến C xe dừng hẳn và quãng đường BC dài 16km. [ads] + Cho đường tròn (O) bán kính R ngoại tiếp tam giác ABC có ba góc nhọn. Các tiếp tuyến của đường tròn (O) tại các điểm B, C cắt nhau tại điểm P. Gọi D, E tương ứng là chân đường các đường vuông góc kẻ từ P xuống các đường thẳng AB và AC và M là trung điểm cạnh BC 1. Chứng minh góc MEP = góc MDP 2. Giả sử B, C cố định và A chạy trên (O) sao cho tam giác ABC luôn là tam giác có ba góc nhọn. Chứng minh đường thẳng DE luôn đi qua một điểm cố định 3. Khi tam giác ABC đều. Hãy tính diện tích tam giác ADE theo R