Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG cấp huyện lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Hiệp Hòa Bắc Giang

Nội dung Đề HSG cấp huyện lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Hiệp Hòa Bắc Giang Bản PDF - Nội dung bài viết Giới thiệu về Đề HSG cấp huyện lớp 8 môn Toán năm 2022-2023Nội dung chi tiết Đề HSG Toán lớp 8 năm 2022-2023 Giới thiệu về Đề HSG cấp huyện lớp 8 môn Toán năm 2022-2023 Chào mừng quý thầy cô và các em học sinh lớp 8! Để chuẩn bị cho kỳ thi chọn học sinh giỏi cấp huyện môn Toán năm học 2022-2023 do Phòng Giáo dục và Đào tạo huyện Hiệp Hòa, tỉnh Bắc Giang tổ chức, mình xin giới thiệu Đề thi HSG cấp huyện môn Toán lớp 8. Đề thi sẽ diễn ra vào ngày thứ Bảy, 25 tháng 03 năm 2023. Đề thi bao gồm các câu hỏi thú vị, thách thức giúp các em học sinh thử sức, khám phá và phát triển năng lực Toán học của mình. Nội dung chi tiết Đề HSG Toán lớp 8 năm 2022-2023 Trích dẫn một số câu hỏi trong đề thi: Cho đa thức \(f(x) = x^3 - 3x^2 + 3x - 4\). Với giá trị nguyên nào của \(x\) thì giá trị của đa thức \(f(x)\) chia hết cho giá trị của đa thức \(x^2 + 2\). Cho \(O\) là trung điểm của đoạn \(AB\). Kẻ tia Ax, By cùng vuông góc với \(AB\). Tính chứng minh và tìm các đường thẳng liên quan đến \(O\), \(A\), \(B\). Trong tam giác \(ABC\) có đường cao, đường trung tuyến và đường phân giác đồng quy. Chứng minh một số tính chất trong tam giác. Đây là một số câu hỏi đại diện trong Đề thi HSG cấp huyện năm 2022-2023. Chúc các em học sinh lớp 8 ôn tập tốt và thi đạt kết quả cao trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi huyện Toán 8 năm 2013 - 2014 phòng GDĐT Nho Quan - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi huyện Toán 8 năm 2013 – 2014 phòng GD&ĐT Nho Quan – Ninh Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 8 năm 2013 – 2014 phòng GD&ĐT Nho Quan – Ninh Bình : + Chứng minh rằng số có dạng 43 2 An n n n 6 11 6 chia hết cho 24 với mọi số tự nhiên n. + Đa thức f(x) khi chia cho x 1 dư 4, khi chia cho 2x 1 dư 2 3 x. Tìm phần dư khi chia f(x) cho 2 1 1 x x. + Cho hình vuông ABCD cạnh a, lấy điểm M bất kỳ trên cạnh BC (M khác B và C). Qua B kẻ đường thẳng vuông góc với đường thẳng DM tại H, kéo dài BH cắt đường thẳng DC tại K. 1. Chứng minh KM vuông góc với DB. 2. Chứng minh rằng: KC.KD = KH.KB. 3. Ký hiệu ABM DCM S S lần lượt là diện tích các tam giác ABM và DCM. a) Chứng minh tổng ABM DCM S S không đổi. b) Xác định vị trí của điểm M trên cạnh BC để 2 2 ABM DCM S S đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó theo a.