Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn đội tuyển thi HSG Quốc gia lớp 12 môn Toán năm 2019 2020 sở GD ĐT Bến Tre

Nội dung Đề chọn đội tuyển thi HSG Quốc gia lớp 12 môn Toán năm 2019 2020 sở GD ĐT Bến Tre Bản PDF Thứ Năm ngày 22 tháng 08 năm 2019, sở Giáo dục và Đào tạo tỉnh Bến Tre tổ chức kỳ thi chọn đội tuyển dự thi học sinh giỏi Quốc gia môn Toán lớp 12 khối Trung học Phổ thông năm học 2019 – 2020. Đề chọn đội tuyển thi HSG Quốc gia Toán lớp 12 năm 2019 – 2020 sở GD&ĐT Bến Tre gồm 1 trang, đề được biên soạn theo dạng đề tự luận với 05 bài toán, thời gian học sinh làm bài thi là 180 phút. [ads] Trích dẫn đề chọn đội tuyển thi HSG Quốc gia Toán lớp 12 năm 2019 – 2020 sở GD&ĐT Bến Tre : + Sắp xếp 1650 học sinh (cả nam và nữ) thành 22 hàng ngang và 75 hàng dọc. Biết rằng với hai hàng dọc bất kì, số lần xảy ra hai học sinh trong cùng hàng ngang có cùng giới tính không vượt quá 11. Chứng minh rằng số học sinh nam không vượt quá 928 em. + Tìm số nguyên nhỏ nhất n sao cho với n số thực phân biệt a1, a2 … an lấy từ đoạn [1;1000] luôn tồn tại ai, aj thỏa 0 < ai – aj < 1+ 3√aiaj với i, j thuộc {1, 2 … n}. + Gọi các điểm I, H lần lượt là tâm đường tròn nội tiếp, trực tâm của tam giác nhọn ABC, B1 và C1 lần lượt là trung điểm của AC và AB, tia B1I cắt cạnh AB tại B2 (B2 khác B1), tia C1I cắt phần kéo dài của AC tại C2, B2C2 cắt BC tại K, A1 là tâm đường tròn ngoại tiếp tam giác BHC. Chứng minh rằng: ba điểm I, A, A1 thẳng hàng khi và chỉ khi S_BKB2 = S_CKC2. (trong đó: S_BKB2 và S_CKC2 lần lượt là diện tích tam giác BKB2 và CKC2).

Nguồn: sytu.vn

Đọc Sách

Đề kiểm tra đội tuyển HSG lần 1 Toán 12 năm 2020 - 2021 trường THPT Vĩnh Lộc - Thanh Hóa
Ngày 08 tháng 11 năm 2020, trường THPT Vĩnh Lộc (Thanh Hóa) phối hợp cùng trường THPT Thạch Thành (Thanh Hóa) tổ chức kỳ thi kiểm tra kiến thức đội tuyển học sinh giỏi môn Toán 12 THPT năm học 2020 – 2021 lần thứ nhất. Đề kiểm tra đội tuyển HSG lần 1 Toán 12 năm 2020 – 2021 trường THPT Vĩnh Lộc – Thanh Hóa gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 180 phút, đề thi có lời giải chi tiết. Trích dẫn đề kiểm tra đội tuyển HSG lần 1 Toán 12 năm 2020 – 2021 trường THPT Vĩnh Lộc – Thanh Hóa : + Bốn người khách cùng ra khỏi quán và bỏ quên mũ. Chủ quán không biết rõ chủ của những chiếc mũ đó nên gửi trả cho họ một cách ngẫu nhiên. Tìm xác suất để cả bốn người cùng được trả sai mũ. + Số lượng của một loài vi khuẩn trong phòng thí nghiệm được tính theo công thức S(t) = A.e^rt. Trong đó, A là số lượng vi khuẩn ban đầu, S(t) là số lượng vi khuẩn có được sau thời gian t (phút), r > 0 là tỷ lệ tăng trưởng không đổi theo thời gian và t là thời gian tăng trưởng. Biết rằng số lượng vi khuẩn ban đầu có 500 con và sau 5 giờ có 1500 con. Hỏi sao bao lâu, kể từ lúc bắt đầu, số lượng vi khuẩn đạt 121500 con? + Bạn An muốn làm một chiếc thùng hình trụ không đáy từ nguyên liệu là mảnh tôn hình tam giác đều ABC có cạnh bằng 90 cm. Bạn cắt mảnh tôn hình chữ nhật MNPQ từ mảnh tôn nguyên liệu (với M, N thuộc cạnh BC; P, Q tương ứng thuộc cạnh AC và AB) để tạo thành hình trụ có chiều cao bằng MQ. Tính thể tích lớn nhất của chiếc thùng mà bạn An có thể làm được.
Đề khảo sát học sinh giỏi Toán 12 năm 2020 - 2021 trường THPT Quế Võ 1 - Bắc Ninh
Đề khảo sát học sinh giỏi Toán 12 năm 2020 – 2021 trường THPT Quế Võ 1 – Bắc Ninh gồm 01 trang với 06 bài toán dạng tự luận, thời gian làm bài 150 phút, đề thi có lời giải chi tiết. Trích dẫn đề khảo sát học sinh giỏi Toán 12 năm 2020 – 2021 trường THPT Quế Võ 1 – Bắc Ninh : + Cho tam giác ABC vuông tại B góc ACB bằng 60° đường phân giác trong của góc ACB cắt AB tại I. Vẽ nửa đường tròn tâm I bán kính IA (như hình vẽ). Cho ∆ABC và nửa đường tròn trên cùng quay quanh AB tạo nên các khối cầu và khối nón có thể tích tương ứng V1, V2. Khẳng định nào dưới đây đúng? + Để chuẩn bị cho hội trại do Đoàn trường tổ chức, lớp 12A1 dự định dựng một cái lều trại có dạng hình parabol như hình vẽ. Nền của lều trại là một hình chữ nhật có kích thước bề ngang 3 mét, chiều dài 6 mét, đỉnh trại cách nền 3 mét. Tính thể tích phần không gian bên trong lều trại. + Cho hình chóp S.ABCD có đáy là hình thoi tâm O cạnh bằng a, SA = SB = SC, SD = 2a; góc ABC bằng 60 độ. Gọi (P) là mặt phẳng đi qua A và vuông góc với SB tại K. Mặt phẳng (P) chia khối chóp thành 2 phần có thể tích lần lượt là V1 và V2, trong đó V1 là thể tích khối đa diện chứa S. Tính V1/V2.
Đề chọn học sinh giỏi Toán 12 năm 2020 - 2021 sở GDĐT Gia Lai (Bảng B)
Đề chọn học sinh giỏi Toán 12 năm 2020 – 2021 sở GD&ĐT Gia Lai (Bảng B) gồm 01 trang với 08 bài toán dạng tự luận, thời gian làm bài 180 phút, kỳ thi được diễn ra vào ngày 12 tháng 12 năm 2020. Trích dẫn đề chọn học sinh giỏi Toán 12 năm 2020 – 2021 sở GD&ĐT Gia Lai (Bảng B) : + Cho dãy số (un) thỏa mãn: u1 = 2021 và u_n+1 = un^2 – un + 1 với mọi n thuộc N*, đặt vn = 1/u1 + 1/u2 + … + 1/un. Tính lim vn. + Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC cân tại A. Gọi H là trung điểm của đoạn BO, K là hình chiếu vuông góc của H lên AC. Biết M (5/4;7/4) là trung điểm của đoạn HK, đường thẳng BK có phương trình x + 7y – 13 = 0. Gọi N là giao điểm của BK và AM. Tìm tọa độ điểm A, biết I(1/2;5/2) là trung điểm của đoạn AB. + Cho tứ diện đều ABCD có cạnh bằng a. Gọi H là chân đường vuông góc hạ từ A xuống mặt phẳng (BCD) và O là trung điểm của đoạn AH. Gọi (α) là mặt phẳng qua O và không đi qua các điểm A, B, C và D. Mặt phẳng (α) cắt các đoạn AB, AC và AD lần lượt tại M, N và P. Tìm giá trị nhỏ nhất của AM.AN.AP theo a.
Đề chọn học sinh giỏi Toán 12 năm 2020 - 2021 sở GDĐT Hải Phòng (Bảng B)
Ngày … tháng 12 năm 2020, sở Giáo dục và Đào tạo thành phố Hải Phòng tổ chức kỳ thi chọn học sinh giỏi thành phố lớp 12 môn Toán năm học 2020 – 2021. Đề chọn học sinh giỏi Toán 12 năm 2020 – 2021 sở GD&ĐT Hải Phòng (Bảng B) gồm 01 trang với 08 bài toán dạng tự luận, thời gian làm bài 180 phút. Trích dẫn đề chọn học sinh giỏi Toán 12 năm 2020 – 2021 sở GD&ĐT Hải Phòng (Bảng B) : + Một bài thi trắc nghiệm có 50 câu hỏi, mỗi câu hỏi có 4 phương án lựa chọn trong đó chỉ có một phương án đúng. Biết rằng mỗi câu trả lời đúng được 0,2 điểm và mỗi câu trả lời sai được 0 điểm. Một học sinh không học bài nên làm bài bằng cách chọn ngẫu nhiên mỗi câu một phương án trả lời. Hỏi điểm số nào có xác suất xuất hiện lớn nhất? + Cho khối tứ diện ABCD. Gọi M, N lần lượt là trung điểm của các cạnh AB, CD; P là điểm nằm trong đoạn BC sao cho BP = k.PC (k > 1). a) Tính thể tích của khối tứ diện ABCD trong trường hợp tam giác ACD vuông tại A, tam giác BCD vuông cân tại B và AB = AC = AD = a. b) Mặt phẳng đi qua ba điểm M, N, P chia tứ diện thành hai khối đa diện có thể tích lần lượt là V1, V2 (trong đó V1 là thể tích của phần chứa điểm A). Tính V2/V1. + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có ACB = 75°, B(-4;-2); D là điểm thuộc cạnh BC sao cho DC = 2DB. Biết đường cao kẻ từ A có phương trình 2x + y = 0 và ADC = 60°. Tìm tọa độ của điểm A biết A có hoành độ âm.