Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát HSG Toán 9 lần 1 năm 2023 - 2024 phòng GDĐT Bình Xuyên - Vĩnh Phúc

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng đội tuyển học sinh giỏi môn Toán 9 lần 1 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Bình Xuyên, tỉnh Vĩnh Phúc; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát HSG Toán 9 lần 1 năm 2023 – 2024 phòng GD&ĐT Bình Xuyên – Vĩnh Phúc : + Cho hình thang ABCD vuông ở đỉnh A và đỉnh B thỏa mãn AD AB BC 2 2. Gọi H chân đường vuông góc kẻ từ A đến BD. a) Chứng minh BHC BCD và tính độ dài CH khi độ dài AB = 4cm. b) Gọi M là trung điểm của HD. Đường thẳng AM và BC cắt nhau tại điểm E. Chứng minh EC EB EM EA. + Cho hình vuông ABCD. Trên cạnh AB, AD lần lượt lấy các điểm M, N thỏa mãn AM DN. Kẻ CH vuông góc MN (H thuộc MN), đường thẳng qua M vuông góc với AB cắt CH tại P. Chứng minh ba điểm DBP thẳng hàng. + Khi kí hợp đồng làm việc thời hạn 5 năm với người lao động được tuyển dụng mới, một công ty đưa ra ba phương án trả lương như sau: Phương án 1: Năm thứ nhất, tiền lương là 120 triệu đồng, kể từ năm thứ hai trở đi, mỗi năm tiền lương tăng thêm 22 triệu so với năm trước. Phương án 2: Quý thứ nhất, tiền lương là 30 triệu đồng, kể từ quý thứ hai trở đi, mỗi quý tăng 1,5 triệu đồng so với quí trước (mỗi quí được tính bừng 3 tháng). Phương án 3: Tháng thứ nhất, tiền lương là 6 triệu đồng, kể từ tháng thứ 2 trở đi, mỗi tháng tăng 300 nghìn đồng so với tháng trước. Nếu là người lao động được tuyển dụng, em sẽ chọn phương án nào để khi kết thúc hợp đồng, tổng số tiền lương thu được là nhiều nhất?

Nguồn: toanmath.com

Đọc Sách

Đề chọn học sinh giỏi lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Tân Kỳ Nghệ An
Nội dung Đề chọn học sinh giỏi lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Tân Kỳ Nghệ An Bản PDF - Nội dung bài viết Đề chọn học sinh giỏi lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Tân Kỳ Nghệ An Đề chọn học sinh giỏi lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Tân Kỳ Nghệ An Chào quý thầy, cô và các em học sinh lớp 9! Đây là đề thi chọn học sinh giỏi môn Toán lớp 9 năm học 2022 – 2023 của phòng Giáo dục và Đào tạo huyện Tân Kỳ, tỉnh Nghệ An. Kỳ thi sẽ diễn ra vào ngày 12 tháng 10 năm 2022. Dưới đây là một số câu hỏi trích dẫn từ đề thi chọn học sinh giỏi Toán lớp 9 năm 2022 – 2023 của phòng GD&ĐT Tân Kỳ – Nghệ An: Tìm số tự nhiên n sao cho n² + 2022 là số chính phương. Cho a, b, c là các số nguyên khác 0 thỏa mãn điều kiện: (1/a + 1/b + 1/c)² = 1/a² + 1/b² + 1/c². Chứng minh rằng: a³ + b³ + c³ chia hết cho 3. Cho tam giác ABC nhọn và điểm P nằm trong tam giác đó. Chứng minh khoảng cách lớn nhất trong các khoảng cách từ P tới ba đỉnh của tam giác không nhỏ hơn hai lần khoảng cách bé nhất trong các khoảng cách từ điểm P đến các cạnh của tam giác đó. Hy vọng rằng các em sẽ cố gắng và đạt kết quả tốt trong kỳ thi sắp tới. Chúc các em học tốt và thành công!
Đề HSG lớp 9 môn Toán vòng 1 năm 2022 2023 liên trường THCS huyện Diễn Châu Nghệ An
Nội dung Đề HSG lớp 9 môn Toán vòng 1 năm 2022 2023 liên trường THCS huyện Diễn Châu Nghệ An Bản PDF - Nội dung bài viết Đề HSG Toán lớp 9 vòng 1 năm 2022 – 2023 Đề HSG Toán lớp 9 vòng 1 năm 2022 – 2023 Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán lớp 9 cấp trường vòng 1 năm học 2022 – 2023 cụm thi liên trường THCS trực thuộc phòng Giáo dục và Đào tạo huyện Diễn Châu, tỉnh Nghệ An. Trích dẫn một số câu hỏi từ đề thi: + Tìm đa thức dư trong phép chia đa thức f(x) cho đa thức x² – 4x – 5, biết f(x) khi chia cho x – 5 được số dư 14 và khi chia cho x + 1 được số dư 2. + Chứng minh rằng tam giác ABC có trọng tâm G, khi vẽ đường thẳng d cắt các cạnh AB, AC thì tổng AB + AC + AD + AE có giá trị không đổi khi đường thẳng d thay đổi vị trí. + Chứng minh rằng trong tam giác nhọn ABC, có đường cao AD, BE, CF cắt nhau tại H, ta có: EF // BC với A cos và 2AH = 4IK = IM. Các em hãy tự tin và chuẩn bị tốt cho bài thi sắp tới. Chúc các em thành công!
Đề khảo sát HSG lớp 9 môn Toán tháng 10 năm 2022 phòng GD ĐT Chí Linh Hải Dương
Nội dung Đề khảo sát HSG lớp 9 môn Toán tháng 10 năm 2022 phòng GD ĐT Chí Linh Hải Dương Bản PDF - Nội dung bài viết Đề khảo sát HSG lớp 9 môn Toán tháng 10 năm 2022 phòng GD ĐT Chí Linh Hải Dương Đề khảo sát HSG lớp 9 môn Toán tháng 10 năm 2022 phòng GD ĐT Chí Linh Hải Dương Chào mừng đến với đề khảo sát chất lượng cho đội tuyển học sinh giỏi môn Toán lớp 9 tháng 10 năm học 2022 – 2023 tại phòng Giáo dục và Đào tạo thành phố Chí Linh, tỉnh Hải Dương. Đề khảo sát bao gồm các câu hỏi sau: Tìm các số nguyên dương x, y thỏa mãn phương trình: x(y2 + 1) = 2y(16 – x). Cho a, b, c, k là các số nguyên thỏa mãn: a3 + b3 + c3 − 1 = k2 – 2k – 2a + b – 2c. Chứng minh rằng k − 1 chia hết cho 3. Cho nửa đường tròn (O;R) đường kính BC. A là điểm di động trên nửa đường tròn. Vẽ AH vuông góc với BC tại H. Đường tròn đường kính AH cắt AB, AC lần lượt tại D, E và cắt (O) tại M. AO cắt DE tại I. Tính DE3/BD.CE theo R. Tính: AI/HB + AI/HC. Xác định vị trí của điểm A để diện tích tam giác ABH lớn nhất. Hãy tự tin và cố gắng hết mình để hoàn thành đề khảo sát này. Chúc các em thành công và đạt kết quả cao trong kỳ thi sắp tới!
Đề khảo sát đội tuyển HSG lớp 9 môn Toán năm 2022 2023 sở GD ĐT Thanh Hóa
Nội dung Đề khảo sát đội tuyển HSG lớp 9 môn Toán năm 2022 2023 sở GD ĐT Thanh Hóa Bản PDF - Nội dung bài viết Đề khảo sát đội tuyển HSG lớp 9 môn Toán năm 2022-2023 sở GD ĐT Thanh Hóa Đề khảo sát đội tuyển HSG lớp 9 môn Toán năm 2022-2023 sở GD ĐT Thanh Hóa Sytu xin gửi đến quý thầy cô và các bạn học sinh lớp 9 đề khảo sát đội tuyển học sinh giỏi môn Toán lớp 9 năm học 2022-2023 của sở Giáo dục và Đào tạo tỉnh Thanh Hóa. Kỳ thi sẽ được tổ chức vào ngày 07 tháng 09 năm 2022. Dưới đây là một số câu hỏi mẫu trong đề khảo sát: 1. Tìm nghiệm nguyên của phương trình: (x + y)2(1 + xy) + 4xy = 6(x + y). 2. Cho hai số tự nhiên a, b thỏa mãn: a3/(a + b); b3/(b + a) đều là số nguyên tố. Chứng minh rằng a2 + 2b + 1 là số chính phương. 3. Xác định vị trí của điểm C trên nửa đường tròn để độ dài đoạn thẳng JK là lớn nhất. Đây là những câu hỏi đòi hỏi sự tư duy logic, các khái niệm Toán học cơ bản và khả năng giải quyết vấn đề. Chúc các em học sinh có sự chuẩn bị tốt và đạt kết quả cao trong kỳ thi sắp tới!