Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề hệ thức Vi-ét và ứng dụng

Nội dung Chuyên đề hệ thức Vi-ét và ứng dụng Bản PDF - Nội dung bài viết Chuyên đề hệ thức Vi-ét và ứng dụng Chuyên đề hệ thức Vi-ét và ứng dụng Tài liệu này được biên soạn bởi tác giả Toán Học Sơ Đồ, là một công cụ hữu ích hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9 chương 4 bài số 6. Tài liệu gồm 57 trang, tổng hợp kiến thức trọng tâm về hệ thức Vi-ét và các ứng dụng của nó. Trọng tâm cần đạt của tài liệu bao gồm: Tóm tắt lý thuyết: Bao gồm hệ thức Vi-ét và ứng dụng của nó trong giải các bài toán. Bài tập và các dạng toán: Cung cấp hướng dẫn giải từ những dạng cơ bản như tính giá trị của biểu thức đối xứng giữa các nghiệm đến các dạng phức tạp hơn như xác định điều kiện của tham số để phương trình có nghiệm thỏa mãn hệ thức cho trước. Bên cạnh đó, tài liệu cũng cung cấp các phần: Bài tập về nhà: Để học sinh tự ôn tập và củng cố kiến thức. Nâng cao phát triển tư duy: Để học sinh rèn luyện tư duy logic và phân tích toán học. Trắc nghiệm rèn luyện phản xạ: Giúp học sinh nâng cao khả năng giải toán nhanh chóng. Phiếu bài tập tự luyện: Bao gồm các dạng bài tập từ cơ bản đến phức tạp để học sinh tự rèn luyện kỹ năng giải toán. Qua tài liệu này, học sinh sẽ có cơ hội nắm vững kiến thức về hệ thức Vi-ét và ứng dụng của nó trong giải các bài toán Đại số, từ đó nâng cao khả năng giải toán và tư duy logic toán học của mình.

Nguồn: sytu.vn

Đọc Sách

Tài liệu Toán 9 chủ đề một số hệ thức về cạnh và góc trong tam giác vuông
Tài liệu gồm 21 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề một số hệ thức về cạnh và góc trong tam giác vuông trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. B. Bài tập và các dạng toán. Dạng 1 : Giải tam giác vuông. Cách giải: Để giải tam giác vuông ta dùng hệ thức giữa cạnh và các góc trong tam giác vuông. – Chú ý: Các bài toán về giải tam giác vuông bao gồm: + Giải tam giác vuông khi biết độ dài 1 cạnh và số đo 1 góc nhọn. + Giải tam giác vuông khi biết độ dài 2 cạnh. Dạng 2 : Tính cạnh và góc của tam giác. Cách giải: Làm xuất hiện tam giác vuông để áp dụng các hệ thức trên bằng cách kẻ thêm đường cao. Dạng 3 : Toán ứng dụng thực tế. Cách giải: Dùng hệ thức giữa cạnh và góc trong tam giác vuông để giải quyết tình huống trong thực tế. Dạng 4 : Toán tổng hợp. Cách giải: Vận dụng linh hoạt một số hệ thức giữa cạnh và góc trong một tam giác vuông để giải toán. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề tỉ số lượng giác của góc nhọn
Tài liệu gồm 15 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề tỉ số lượng giác của góc nhọn trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Định nghĩa. 2. Tỉ số lượng giác của hai góc phụ nhau. 3. Một số hệ thức liên hệ giữa các tỉ số lượng giác. 4. Bảng tỷ số lượng giác của một số góc đặc biệt. B. Bài tập và các dạng toán. Dạng toán: Tính tỉ số lượng giác của góc nhọn, tính cạnh, tính góc. Cách giải: Sử dụng các kiến thức trong phần tóm tắt lý thuyết. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề biến đổi đơn giản biểu thức chứa căn bậc hai
Tài liệu gồm 22 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề biến đổi đơn giản biểu thức chứa căn bậc hai trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Đưa thừa số ra ngoài dấu căn. 2. Đưa thừa số vào trong dấu căn. 3. Khử mẫu của biểu thức lấy căn. 4. Trục căn thức ở mẫu. B. Bài tập và các dạng toán. Dạng 1: Đưa thừa số ra ngoài dấu căn hoặc vào trong dấu căn. Dạng 2: So sánh các căn bậc hai. Dạng 3: Rút gọn biểu thức chứa căn bậc hai. Dạng 4: Khử mẫu của biểu thức dưới dấu căn bậc hai. Dạng 5: Trục căn thức ở mẫu. Dạng 6: Sử dụng các phép biến đổi căn thức bậc hai để giải phương trình. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề căn bậc ba
Tài liệu gồm 20 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề căn bậc ba trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. I. Căn bậc ba. II. Căn bậc n. B. Bài tập và các dạng toán. Dạng 1: Thực hiện phép tính có chứa căn bậc ba. Dạng 2: Khử mẫu thức chứa căn bậc ba. Dạng 3: So sánh các căn bậc ba. Dạng 4: Giải phương trình chứa căn bậc ba. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.