Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh môn Toán năm 2022 2023 sở GD ĐT Tiền Giang

Nội dung Đề tuyển sinh môn Toán năm 2022 2023 sở GD ĐT Tiền Giang Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán năm 2022 - 2023 sở GD&ĐT Tiền Giang Đề thi tuyển sinh môn Toán năm 2022 - 2023 sở GD&ĐT Tiền Giang Xin chào quý thầy cô và các em học sinh lớp 9. Dưới đây là đề thi chính thức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán năm học 2022 - 2023 của sở Giáo dục và Đào tạo tỉnh Tiền Giang. Kỳ thi diễn ra vào ngày 17 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2022 - 2023 sở GD&ĐT Tiền Giang: Trong mặt phẳng toạ độ Oxy, cho parabol (P): y = x^2 và đường thẳng (d): y = -2x + 3. Vẽ parabol (P) và tìm toạ độ các giao điểm của (P) và (d) bằng phép tính. Viết phương trình đường thẳng (d′) song song với (d) và tiếp xúc (P). Tính toạ độ tiếp điểm M của (d′) và (P). Một xe tải đi từ A đến B cách nhau 210 km. Sau 2 giờ, trên cùng quãng đường, một ô tô khởi hành từ B đến A với vận tốc lớn hơn xe tải 10 km/h. Tính vận tốc xe tải khi hai xe gặp nhau tại nơi cách A 150 km. Cho tam giác ABC có ba góc nhọn. Kẻ các đường cao AD và BE (D ∈ BC và E ∈ AC). Chứng minh tứ giác ABDE nội tiếp đường tròn và xác định tâm O của đường tròn đó. Chứng minh rằng CD·CB = CE·CA. Giả sử ACB đo 60 độ và AB = 6 cm. Tính diện tích hình quạt tròn giới hạn bởi hai bán kính OD, OE và cung nhỏ DE của đường tròn (O). Hy vọng đề thi sẽ giúp các em ôn tập và chuẩn bị tốt cho kỳ thi sắp tới. Chúc các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề thi thử Toán vào lớp 10 năm 2022 - 2023 phòng GDĐT Bình Lục - Hà Nam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Bình Lục, tỉnh Hà Nam. Trích dẫn đề thi thử Toán vào lớp 10 năm 2022 – 2023 phòng GD&ĐT Bình Lục – Hà Nam : + Cho Parabol (P): y = x2 và đường thẳng (d): y = (2m + 1)x – 2m với m là tham số. a) Trong các điểm M, N điểm nào thuộc (P)? b) Tìm m để (P) cắt (d) tại hai điểm phân biệt A(x1;y1); B(x2;y2) sao cho. + Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O; R), (AB < AC). Ba đường cao AD, BE, CF cắt nhau tại H. a) Chứng minh tứ giác BFEC nội tiếp. Xác định tâm I của đường tròn ngoại tiếp tứ giác BFEC. b) Đường thẳng EF cắt đường thẳng BC tại K. Chứng minh KF.KE = KB.KC. c) Đường thẳng AK cắt đường tròn (O) tại M (M khác A). Chứng minh MAF = MEF. d) Chứng minh đường thẳng MH luôn đi qua một điểm cố định khi A thay đổi. + Cho a, b, c là các số dương thỏa. Chứng minh abc = < 1/8.
Đề thi thử Toán vào lớp 10 năm 2022 - 2023 trường THCS Vĩnh Quang - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2022 – 2023 trường THCS Vĩnh Quang, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 27 tháng 05 năm 2022. Trích dẫn đề thi thử Toán vào lớp 10 năm 2022 – 2023 trường THCS Vĩnh Quang – Thanh Hóa : + Cho hàm số y = mx + n (m khác 0). Tìm m và n biết đồ thị hàm số song song với đường thẳng y = -x + 2021 và đi qua điểm A(1;2022). + Cho phương trình: x2 + 5x + m – 2 = 0 (m là tham số). Tìm m để phương trình có hai nghiệm phân biệt x1 và x2 thoả mãn. + Cho đường tròn (O; R), đường kính AB vuông góc với dây cung MN tại điểm H (H nằm giữa O và B). Trên tia đối của tia NM lấy điểm C nằm ngoài đường tròn (O; R) sao cho đoạn thẳng AC cắt đường tròn (O; R) tại điểm K khác A. Hai dây MN và BK cắt nhau ở E. Qua N kẻ đường thẳng vuông góc với AC cắt tia MK tại F. 1. Chứng minh tứ giác AHEK nội tiếp. 2.Chứng minh tam giác NFK cân và EM.NC = EN.CM. 3.Giả sử KE = KC. Chứng minh OK // MN.
Đề thi thử Toán vào 10 lần 2 năm 2022 - 2023 phòng GDĐT Tân Kỳ - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT lần 2 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Tân Kỳ, tỉnh Nghệ An. Trích dẫn đề thi thử Toán vào 10 lần 2 năm 2022 – 2023 phòng GD&ĐT Tân Kỳ – Nghệ An : + Cho phương trình: x2 – 2x + m – 1 = 0 (1) (với m là tham số). a) Giải phương trình (1) khi m = -7 b) Tìm m để phương trình (1) có hai nghiệm x1 và x2 thỏa mãn hệ thức 2×1 + 2×2 + x12x22 = 8. + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Để tham gia kỷ niệm ngày sinh của Bác 19/05, trường THCS A dự định lấy 120 học sinh gồm nam và nữ tham gia diễu hành. Nhưng sau đó ban tổ chức đã cắt giảm 20% số học sinh nam và 10% số học sinh nữ, do vậy tổng số học sinh tham gia diễu hành ít hơn dự kiến ban đầu là 17 em. Tính số học sinh nam và nữ dự định lấy để tham gia diễu hành. + Cho đường tròn (O), hai đường kính AB và CD vuông góc với nhau. Trên tia đối của tia CA lấy điểm E. Qua điểm C vẽ đường thẳng vuông góc với BE tại F. a) Chứng minh tứ giác BOCF là tứ giác nội tiếp. b) Gọi H là giao điểm của OF và BC. Chứng minh CH.FC = BH.FE. c) Đường tròn ngoại tiếp tam giác CEF cắt đường tròn (O) tại G. Chứng minh D, H, G thẳng hàng.
Đề thi thử Toán vào lớp 10 lần 2 năm 2022 - 2023 phòng GDĐT Quỳ Hợp - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán ôn tập thi tuyển sinh vào lớp 10 THPT lần 2 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Quỳ Hợp, tỉnh Nghệ An. Trích dẫn đề thi thử Toán vào lớp 10 lần 2 năm 2022 – 2023 phòng GD&ĐT Quỳ Hợp – Nghệ An : + Cho phương trình bậc hai ẩn x: x2 + 2mx + m2 – 1 = 0 (1) (với m là tham số). Tìm m để phương trình (1) có hai nghiệm x1 và x2 thỏa mãn. + Hưởng ứng Ngày sách và văn hóa đọc Việt Nam 21/4. Sáng ngày 20/4, Trung tâm văn hóa thể thao và truyền thông huyện phối hợp với Thư viện tỉnh và Trường THCS A tổ chức ngày hội đọc sách năm 2022 với chủ đề “Sách với cuộc sống”. Tại buổi lễ Thư viện tỉnh đã tặng trường THCS A 50 cuốn sách về kỹ năng sống và truyện về Bác Hồ kính yêu có tổng trị giá 5 triệu đồng. Biết mỗi cuốn sách kỹ năng sống có giá 120 nghìn đồng và mỗi cuốn truyện về Bác Hồ kính yêu có giá 70 nghìn đồng. Hỏi Thư viện tỉnh đã tặng cho trường THCS A bao nhiêu cuốn sách về kỹ năng sống và bao nhiêu cuốn truyện về Bác Hồ kính yêu? + Cho tam giác nhọn ABC nội tiếp đường tròn tâm O bán kính R. Các đường cao BD, CE của tam giác ABC cắt nhau tại H. Đường thẳng chứa tia phân giác của góc BHE cắt AB, AC lần lượt tại F, G. a. Chứng minh các tứ giác BCDE; AEHD nội tiếp đường tròn. b. Chứng minh: BH.BD + CH.CE = BC2. c. Đường tròn ngoại tiếp tam giác AFG cắt đường phân giác của góc BAC tại Q (Q khác A). Khi B, C cố định và A thay đổi trên cung lớn BC của đường tròn (O). Chứng minh rằng đường thẳng HQ luôn đi qua một điểm cố định.