Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Gắn hệ tọa độ Oxyz để giải các bài toán hình học không gian - Phương Nguyễn

Tài liệu gồm 34 trang hướng dẫn giải bài toán hình học không gian bằng cách gắn hệ trục tọa độ Oxy. Tài liệu do tác giả Nguyễn Phương biên soạn. Như các bạn đều biết , môn Toán là một môn rất quan trọng và có tầm ảnh hưởng rất lớn tới việc xét tuyển vào Đại Học hay Cao Đẳng sau này. Do đó để có được số điểm cao trong môn này, ta cần phải có 1 vốn kiến thức cần thiết và hiểu rõ những khái niệm , bản chất toán học. Và trong chuyên đề ngày hôm nay mình sẽ đề cập đến 1 trong 3 câu hình học luôn xuất hiện trong đề thi đại học. Đó chính là các bài toán về hình học không gian thuần túy (cổ điển) với phương pháp gắn hệ trục Oxyz và giải như một bài toán giải tích bình thường. Đa số trong các bài toán này, mình thường thấy các bạn chỉ làm được 1/2 yêu cầu đề bài (giống mình lúc trước hihi :D). Các câu hỏi còn lại như tìm khoảng cách giữa 1 điểm đến đường thẳng hay tìm khoảng cách giữa 2 đường thẳng hoặc chứng minh song song, vuông góc v.v….. các bạn đều bỏ (và mình cũng vậy :D). Lý do là bởi vì bạn đã quên 1 số kiến thức về hình học ở lớp 11 và các cách tư duy dựng hình. Vì thế mình sẽ giúp các bạn vượt qua các bài toán ấy bằng phương pháp tọa độ hóa này. [ads] Ưu điểm: + Dễ hiểu + Dễ làm + Công việc chính là chỉ tính toán + Không cần chứng minh nhiều + Phù hợp với các bạn học hình yếu Nhược điểm: + Tính toán dễ sai + Đôi khi sẽ chậm hơn so với cách cổ điển + Ít được sử dụng + Đôi khi nhìn rất dễ nhầm lẫn

Nguồn: toanmath.com

Đọc Sách

Chuyên đề phương pháp tọa độ trong không gian - Trần Văn Tài
Tài liệu gồm 187 trang phân dạng và hướng dẫn giải các dạng toán chuyên đề phương pháp tọa độ trong không gian có đáp án và lời giải chi tiết. Các dạng toán gồm: + Dạng toán 1. Các vấn đề cơ bản về hệ trục tọa độ Oxyz + Dạng toán 2. Phương trình mặt phẳng + Dạng toán 3. Phương trình đường thẳng và bài toán liên quan + Dạng toán 4. Phương trình mặt cầu và bài toán liên quan + Dạng toán 5. Tìm điểm, khoảng cách, góc và vị trị tương đối + Một số câu hỏi luyện tập tổng hợp. [ads]
Trắc nghiệm và tự luận phương pháp tọa độ trong không gian - Nguyễn Quốc Thịnh
Tài liệu gồm 223 trang tuyển tập các dạng toán phương pháp tọa độ trong không gian và bài tập trắc nghiệm, tự luận có đáp án và lời giải chi tiết. Xin gửi tới các em cuốn: PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN. Nội dung cuốn tài liệu bám sát nội dung kiến thức trong cấu trúc đề minh họa của Bộ GD&ĐT và SGK Hình học 12 Cơ bản. Tài liệu được chia thành 5 phần: [ads] + Phần 1. Hệ tọa độ trong không gian + Phần 2. Phương trình mặt phẳng trong không gian + Phần 3. Phương trình đường thẳng trong không gian + Phần 4. Bài tập ôn tập chương + Phần 5. Giải toán hình không gian bằng phương pháp tọa độ Nhóm tác giả: Thầy Nguyễn Quốc Thịnh, Thầy Lê Văn Định, Thầy Nguyễn Đăng Tuấn, Thầy Đoàn Trúc Danh, Thầy Đặng Công Vinh Bửu, Thầy Ngô Nguyễn Anh Vũ, Thầy Trần Bá Hải, Thầy Lưu Chí Tài, Cô Nguyễn Thảo Nguyên, Thầy Nguyễn Hoàng Kim Sang, Cô Nguyễn Ngân Lam cùng các thành viên Toán học Bắc Trung Nam.
Tuyển tập 1128 bài toán trắc nghiệm hình học tọa độ Oxyz - Nguyễn Bảo Vương
Tài liệu gồm 268 trang với 1128 câu hỏi trắc nghiệm hình học tọa độ Oxyz có đáp án được chia thành 8 phần: 1. 182 bài tập trắc nghiệm tọa độ không gian Oxyz cơ bản 2. 81 bài tập trắc nghiệm tọa độ không gian Oxyz nâng cao 3. 182 bài tập trắc nghiệm phương trình đường thẳng cơ bản 4. 109 bài tập trắc nghiệm phương trình đường thẳng nâng cao 5. 234 bài tập trắc nghiệm phương trình mặt phẳng cơ bản 6. 147 bài tập trắc nghiệm phương trình mặt phẳng nâng cao 7. 81 bài tập trắc nghiệm phương trình mặt cầu cơ bản 8. 112 bài tập trắc nghiệm phương trình mặt cầu nâng cao [ads]
Kỹ thuật giải nhanh chuyên đề hình giải tích không gian - Trần Đình Cư
Tài liệu gồm 83 trang hướng dẫn các kỹ thuật giải nhanh hình học giải tích không gian trong chương trình Hình học 12 chương 3. CHỦ ĐỀ 1. HỆ TỌA ĐỘ TRONG KHÔNG GIAN Vấn đề 1. Các bài toán điển hình thường gặp Vấn đề 2. Ứng dụng tọa độ giải toán hình học không gian CHỦ ĐỀ 2. MẶT PHẲNG VÀ CÁC BÀI TOÁN LIÊN QUAN Vấn đề 1. Viết phương trình mặt phẳng Vấn đề 2. Vị trí tương đối của hai mặt phẳng Vấn đề 3. Khoảng cách từ một điểm đến một mặt phẳng, khoảng cách giữa hai mặt phẳng song song. Hình chiếu và điểm đối xứng Vấn đề 4. Góc của hai mặt phẳng Vấn đề 5. Ứng dụng giải toán hình học không gian CHỦ ĐỀ 3. MẶT CẦU VÀ CÁC BÀI TOÁN LIÊN QUAN Vấn đề 1. Viết phương trình mặt cầu Vấn đề 2. Vị trí tương đối của mặt phẳng và mặt cầu [ads] CHỦ ĐỀ 4. ĐƯỜNG THẲNG VÀ CÁC BÀI TOÁN LIÊN QUAN Vấn đề 1. Viết phương trình đường thẳng + Dạng 1. Viết phương trình đường thẳng Δ (Δ ⊂ (P)) hoặc song song với (P) qua điểm A và vuông góc với đường thẳng d + Dạng 2. Viết phương trình đường thẳng Δ qua A, vuông góc với d1 và cắt d2 + Dạng 3. Viết phương trình đường thẳng Δ qua A, song song với (P) và cắt d + Dạng 4. Viết phương trình đường thẳng d nằm trong mặt phẳng (P) và cắt cả hai đường thẳng d1, d2 Vấn đề 2. Vị trí tương đối của 2 đường thẳng trong không gian + Dạng 1. Viết phương trình đường thẳng đi qua điểm M và cắt cả hai đường thẳng d1 và d2 + Dạng 2. Viết phương trình đường thẳng d song song với đường thẳng Δ và cắt hai đường thẳng d1, d2 + Dạng 3. Viết phương trình đường vuông góc chung d của hai đường thẳng chéo nhau Vấn đề 3. Khoảng cách từ một điểm đến một đường thẳng và khoảng cách giữa hai đường thẳng chéo nhau + Dạng 1. Khoảng cách từ một điểm đến một đường thẳng + Dạng 2. Khoảng cách giữa hai đường thẳng chéo nhau + Dạng 3. Ứng dụng tọa độ giải toán không gian Vấn đề 4. Các bài toán liên quan giữa đường thẳng và mặt phẳng + Dạng 1. Đường thẳng song song với mặt phẳng + Dạng 2. Hình chiếu vuông góc của một điểm lên mặt phẳng + Dạng 3. Hình chiếu vuông góc của một đường thẳng lên mặt phẳng + Dạng 4. Hình chiếu của một điểm lên đường thẳng Vấn đề 5. Các bài toán liên quan giữa đường thẳng và mặt cầu CHỦ ĐỀ 5. GÓC TRONG KHÔNG GIAN Vấn đề 1. Góc và các bài toán liên quan Vấn đề 2 . Sử dụng tọa độ giải toán hình học không gian CHỦ ĐỀ 6. MỘT SỐ PHƯƠNG PHÁP GIẢI TOÁN CỰC TRỊ HÌNH HỌC KHÔNG GIAN Vấn đề 1. Giải toán cực trị hình học bằng cách sử dụng bất đẳng thức hình học Vấn đề 2. Giải toán cực trị bằng phương pháp hàm số hoặc bằng cách sử dụng bất đẳng thức đại số Vấn đề 3. Giải toán cực trị bằng phương pháp ứng dụng tâm tỉ cự + Dạng 1. Cực trị độ dài vectơ + Dạng 2. Cực trị độ dài bình phương vô hướng của vectơ + Dạng 3. Cực trị dựa vào tính chất hình học PHỤ LỤC 1. MỘT SỐ BÀI TẬP RÈN LUYỆN HÌNH HỌC GIẢI TÍCH TRƯỚC KHI THI  PHỤ LỤC 2. GIẢI BÀI TOÁN HÌNH HỌC KHÔNG GIAN BÀNG HAI CÁCH