Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi tỉnh Toán 9 năm 2020 - 2021 sở GDĐT Quảng Nam

Ngày 10 tháng 04 năm 2021, sở Giáo dục và Đào tạo tỉnh Quảng Nam tổ chức kỳ thi học sinh giỏi lớp 9 cấp tỉnh môn Toán năm học 2020 – 2021. Đề học sinh giỏi tỉnh Toán 9 năm 2020 – 2021 sở GD&ĐT Quảng Nam gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi tỉnh Toán 9 năm 2020 – 2021 sở GD&ĐT Quảng Nam : + Cho hình vuông ABCD có tâm O và cạnh bằng 6cm, điểm M nằm trên cạnh BC. a) Khi BM cm 2, hạ OK vuông góc với AM tại K. Tính độ dài đoạn thẳng OK. b) Khi điểm M thay đổi trên cạnh BC (M không trùng B và C), điểm N thay đổi trên cạnh CD sao cho 0 MAN 45, E là giao điểm của AN và BD. Chứng minh tam giác AEM vuông cân và đường thẳng MN luôn tiếp xúc với một đường tròn cố định. + Cho hai đường tròn O R và O r tiếp xúc ngoài tại AR r. Dựng lần lượt hai tiếp tuyến OB O C của hai đường tròn O r, O R sao cho hai tiếp điểm B C nằm cùng phía đối với đường thẳng OO’. Từ B vẽ đường thẳng vuông góc với OO’ cắt OC’ tại K, từ C vẽ đường thẳng vuông góc với OO’ cắt OB tại H. a) Gọi D là giao điểm của OB và OC’. Chứng minh DO BO CO DO và DA là tia phân giác của góc ODO. b) Đường thẳng AH cắt đường tròn O R tại E (E khác A). Chứng minh tứ giác OABE nội tiếp đường tròn. c) Đường thẳng AK cắt đường tròn O r tại F (F khác A), L là giao điểm của BC và EF. Chứng minh BF song song với CE và ba điểm ADL thẳng hàng. + Tìm giá trị của tham số m để phương trình 2 1 0 x x mx m có hai nghiệm phân biệt.

Nguồn: toanmath.com

Đọc Sách

Đề thi học sinh giỏi Toán 9 năm 2021 - 2022 phòng GDĐT quận Hoàn Kiếm - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi khảo sát học sinh giỏi môn Toán lớp 9 cấp quận năm học 2021 – 2022 phòng Giáo dục và Đào tạo quận Hoàn Kiếm, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Năm ngày 17 tháng 02 năm 2022.
Đề thi học sinh giỏi Toán 9 năm 2021 - 2022 phòng GDĐT quận Hai Bà Trưng - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi môn Toán lớp 9 cấp quận năm học 2021 – 2022 phòng Giáo dục và Đào tạo quận Hai Bà Trưng, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Năm ngày 17 tháng 02 năm 2022.
Đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2021 - 2022 sở GDĐT Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 cấp tỉnh năm học 2021 – 2022 sở Giáo dục và Đào tạo UBND tỉnh Bắc Ninh; kỳ thi được diễn ra vào thứ Tư ngày 16 tháng 02 năm 2022.
Đề thi học sinh giỏi Toán 9 năm 2021 - 2022 trường THCS Cầu Giấy - Hà Nội
Đề thi học sinh giỏi Toán 9 năm 2021 – 2022 trường THCS Cầu Giấy – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút; kỳ thi được diễn ra vào ngày … tháng 02 năm 2022. Trích dẫn đề thi học sinh giỏi Toán 9 năm 2021 – 2022 trường THCS Cầu Giấy – Hà Nội : + Cho a b c là các số thực thỏa mãn 0 a b c 1. Tìm giá trị lớn nhất của biểu thức T. + Cho tam giác nhọn ABC với AB là cạnh nhỏ nhất, gọi D là trung điểm cạnh AB và P là điểm trong tam giác sao cho CAP = CBP = ACB. Gọi M, N lần lượt là chân đường vuông góc hạ từ P xuống BC và AC. Đường thẳng đi qua M và song song với AC cắt đường thẳng đi qua N và song song với BC tại K. Gọi E là giao điểm của KN và AP; F là giao điểm của KM và BP. a. Chứng minh rằng E và F lần lượt là trung điểm của AP và BP. b. Chứng minh rằng D nằm trên trung trực của MN. c. Chứng minh rằng MDN = 2MKN. + Có 27 con Robot tham gia một cuộc đua. Trong mỗi vòng sẽ có 3 con tham gia, mỗi con Robot chạy với tốc độ cố định, không đổi giữa các vòng đua và tốc độ của mỗi con Robot là đôi một khác nhau. Sau mỗi vòng, người ta ghi lại thứ tự về thành tích của các Robot tham gia vòng đua đó. Hỏi 14 vòng đua có đủ để xác định thứ tự của hai con Robot chạy nhanh nhất hay không?