Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử THPT Quốc gia 2019 môn Toán trường THPT chuyên Hà Tĩnh

Dựa trên kế hoạch ôn tập hướng đến kỳ thi THPT Quốc gia môn Toán năm 2019 do Bộ Giáo dục và Đào tạo tổ chức, vừa qua, trường THPT chuyên Hà Tĩnh đã tổ chức kỳ thi thử THPT Quốc gia môn Toán năm học 2018 – 2019 lần thứ nhất. Kỳ thi nhằm giúp phổ biến quy chế thi và cấu trúc đề môn Toán đến học sinh khối 12 của trường, qua đây, nhà trường và giáo viên bộ môn Toán sẽ có cái nhìn chính xác nhất về khả năng của từng học sinh, để vạch ra phương án ôn tập phù hợp nhất cho giai đoạn còn lại. Đề thi thử THPT Quốc gia 2019 môn Toán trường THPT chuyên Hà Tĩnh có mã đề 001, đề gồm 06 trang với 50 câu trắc nghiệm dạng 04 đáp án A, B, C, D, học sinh có 90 phút để hoàn thành bài thi Toán, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi thử THPT Quốc gia 2019 môn Toán trường THPT chuyên Hà Tĩnh : + Ông An có một khu đất hình elip với độ dài trục lớn 10 m và độ dài trục bé 8 m. Ông An muốn chia khu đất thành hai phần, phần thứ nhất là một hình chữ nhật nội tiếp elip dùng để xây bể cá cảnh và phần còn lại dùng để trồng hoa. Biết chi phí xây bể cá là 1000000 đồng trên 1m2 và chi phí trồng hoa là 200000 đồng trên 1m2. Hỏi ông An có thể thiết kế xây dựng như trên với tổng chi phí thấp nhất gần nhất với số nào sau đây? [ads] + Cho hàm số y = f(x) liên tục trên R và có bảng biến thiên như hình bên. Tìm khẳng định đúng? A. Hàm số có giá trị nhỏ nhất bằng 0 và giá trị lớn nhất bằng 1. B. Hàm số đạt cực đại tại x = 0 và đạt cực tiểu tại x = -1. C. Đồ thị hàm số cắt trục hoành tại 3 điểm phân biệt. D. Hàm số có đúng một cực trị. + Trên các cạnh AB, BC, CA của tam giác ABC lần lượt lấy 2, 4, n (n > 3) điểm phân biệt (các điểm không trùng với các đỉnh của tam giác). Tìm n biết rằng số tam giác có các đỉnh thuộc n + 6 điểm đã cho là 247.

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát Toán 12 lần 1 năm 2019 trường THPT Nguyễn Đức Cảnh - Thái Bình
Ngày …/10/2019, trường THPT Nguyễn Đức Cảnh, tỉnh Thái Bình tổ chức kỳ thi khảo sát chất lượng lần 1 môn Toán 12, nhằm kiểm tra chất lượng học sinh khối 12 trong giai đoạn giữa học kỳ 1 năm học 2019 – 2020. Đề khảo sát Toán 12 lần 1 năm 2019 trường THPT Nguyễn Đức Cảnh – Thái Bình mã đề 001, đề gồm có 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, nội dung kiểm tra thuộc các chuyên đề Toán 12 học sinh đã học: hàm số và đồ thị, mũ và logarit, thể tích khối đa diện … đề thi có đáp án. Trích dẫn đề khảo sát Toán 12 lần 1 năm 2019 trường THPT Nguyễn Đức Cảnh – Thái Bình : + Cho hàm số f(x) = (x – 3 + √(x^2 – 3))/(x^2 – x – 2). Kết luận về số tiệm cận của đồ thị hàm số nào sau đây là đúng? A. Đồ thị có một tiệm cận ngang y = 0 và không có tiện cận đứng . B. Đồ thị có một tiệm cận ngang y = 0 và tiệm cận đứng x = 2 . C. Đồ thị có một tiệm cận ngang y = 0 và hai tiệm cận đứng x = 2, x = -1. D. Đồ thị có 2 tiệm cận ngang y = 0, y = 2 và tiệm cận đứng x = -1. [ads] + Cho hàm số bậc ba f(x) = ax^3 + bx^2 + cx + d. Biết hàm số có cực đại và cực tiểu. Gọi A là điểm cực đại của đồ thị hàm số, tiếp tuyến của đồ thị hàm số tại A cắt đồ thị tại điểm B và AB = 6. Tính |xCĐ – xCT|. + Cho hàm số f(x) = x^3 – 3x + 1. Có bao nhiêu giá trị nguyên của tham số m để phương trình 2019.f(√(x + 1) + √(3 – x) + √2) = m có tổng tất cả các nghiệm phân biệt bằng 4?
Đề kiểm tra định kì lần 1 Toán 12 năm 2019 - 2020 trường chuyên Bắc Ninh
giới thiệu đến quý thầy, cô giáo cùng các em học sinh khối 12 đề kiểm tra định kì lần 1 Toán 12 năm học 2019 – 2020 trường THPT chuyên Bắc Ninh, kỳ thi được diễn ra vào giai đoạn giữa học kì 1 năm học 2019 – 2020. Đề kiểm tra định kì lần 1 Toán 12 năm 2019 – 2020 trường chuyên Bắc Ninh có mã đề 105, đề được biên soạn theo dạng trắc nghiệm với 50 câu hỏi và bài toán, đề gồm 06 trang, thời gian làm bài 90 phút. Trích dẫn đề kiểm tra định kì lần 1 Toán 12 năm 2019 – 2020 trường chuyên Bắc Ninh : + Mệnh đề nào trong các mệnh đề dưới đây là đúng? A. Đồ thị của hai hàm số y = log_e x và y = log_1/e x đối xứng nhau qua trục tung. B. Đồ thị của hai hàm số y = e^x và y = ln x đối xứng nhau qua đường phân giác của góc phần tử thứ nhất. C. Đồ thị của hai hàm số y = e^x và y = ln x đối xứng nhau qua đường phân giác của góc phần tử thứ hai. D. Đồ thị của hai hàm số y = e^x và y = (1/e)^x đối xứng nhau qua trục hoành. [ads] + Cho tứ diện đều ABCD có cạnh bằng 6√2. Ở bốn đỉnh tứ diện người ta cắt đi các tứ diện đều bằng nhau có cạnh bằng x. Biết khối đa diện còn lại sau khi cắt có thể tích bằng 1/2 thể tích khối tứ diện ABCD. Giá trị của x là? + Cho a và b là hai số thực dương thỏa mãn 5a^2 + 2b^2 + 5 = 2a + 4b + 4ab. Xét các hệ thức sau: Hệ thức 1: In(a + 1) + In(b + 1) = ln(a^2 + b^2 +1). Hệ thức 2: In(a^2 + 1) + In(b + 1) = In(b^2 + 1) + In(a + 1). Hệ thức 3: In(a + b + 3ab – 1) = 2ln(a + b). Hệ thức 4: ln(a + b + 2ab + 2) = 2ln(a + b). Trong các hệ thức trên có bao nhiêu hệ thức đúng?
Đề khảo sát chất lượng Toán 12 năm 2019 - 2020 trường Ngô Gia Tự - Phú Yên
giới thiệu đến quý thầy, cô giáo cùng các em học sinh khối 12 đề thi khảo sát chất lượng môn Toán lớp 12 năm học 2019 – 2020 trường THPT Ngô Gia Tự – Phú Yên, kỳ thi được diễn ra trong giai đoạn giữa học kỳ 1 năm học 2019 – 2020. Đề khảo sát chất lượng Toán 12 năm 2019 – 2020 trường Ngô Gia Tự – Phú Yên có mã đề 132, đề gồm 10 trang với 50 câu trắc nghiệm khách quan, học sinh có 90 phút để làm bài thi, nội dung kiểm tra thuộc các chủ đề: ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số (Giải tích 12 chương 1), khối đa diện và thể tích của chúng (Hình học 12 chương 1), đề thi có đáp án. [ads] Trích dẫn đề khảo sát chất lượng Toán 12 năm 2019 – 2020 trường Ngô Gia Tự – Phú Yên : + Cho hình lăng trụ ABC.A’B’C’ có đáy ABC là tam giác vuông tại A, AB = 1, BC = 2. Hình chiếu vuông góc của điểm A’ trên mặt phẳng (ABC) là trung điểm của BC. Khoảng cách giữa hai đường thẳng B’C’ và A’B bằng? + Cho hàm số y = f(x) có đồ thị hàm số như hình vẽ sau. Gọi m, M lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số y = f(2x^3 + x – 1) trên đoạn [0;1]. Giá trị của M – m bằng? + Cho hàm số y = f(x). Hàm số y = f'(x) có đồ thị như hình vẽ. Gọi S là tập tất cả các giá trị nguyên của tham số m thoả mãn m thuộc (−10;10) sao cho hàm số y = f(x – m) đồng biến trên khoảng (−2;0) . Số phần tử của tập S là?