Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn học sinh giỏi cấp tỉnh Toán THPT năm 2018 - 2019 sở GDĐT Lào Cai

Đề thi chọn học sinh giỏi cấp tỉnh Toán THPT năm 2018 – 2019 sở GD&ĐT Lào Cai được biên soạn và tổ chức thi ngày 22 tháng 01 năm 2019 nhằm tìm kiếm và tuyên dương các em học sinh khối THPT giỏi môn Toán đang học tập tại các trường THPT tại tỉnh Lào Cai, đề gồm 01 trang với 05 bài toán tự luận, học sinh làm bài thi trong vòng 180 phút. Trích dẫn đề thi chọn học sinh giỏi cấp tỉnh Toán THPT năm 2018 – 2019 sở GD&ĐT Lào Cai : + Trong mặt phẳng với hệ tọa độ Oxy, cho hình thang vuông ABCD vuông tại A và D, có CD = 2AD = 2AB. Gọi M (2;4) là điểm thuộc cạnh AB sao cho AB = 3AM . Điểm N thuộc cạnh BC sao cho tam giác DMN cân tại M. Phương trình đường thẳng MN là 2x + y – 8 = 0. Tìm tọa độ các đỉnh của hình thang ABCD biết D thuộc đường thẳng d: x + y = 0 và điểm A thuộc đường thẳng d’: 3x + y – 8 = 0. [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a. Biết hình chiếu vuông góc của S lên mặt phẳng (ABCD) là điểm M thỏa mãn AD = 3MD. Trên cạnh CD lấy các điểm I, N sao cho góc ABM = MBI và MN vuông góc với BI. Biết góc giữa đường thẳng SC và mặt phẳng (ABCD) bằng 60°. Tính thể tích của khối chóp S.AMCB và tính khoảng cách từ N đến mặt phẳng (SBC). + Cho hàm số y = f(x) có đạo hàm f'(x) = (x – 3)^2018.(e^2x – e^x + 1/3).(x^2 – 2x) với mọi x thuộc R. Tìm tất cả các số thực m để hàm số f(x^2 – 8x + m) có đúng 3 điểm cực trị sao cho x1^2 + x2^2 + x3^2 = 50 trong đó x1, x2, x3 là hoành độ của ba điểm cực trị đó.

Nguồn: toanmath.com

Đọc Sách

Đề chọn đội tuyển thi HSG QG môn Toán năm 2021 - 2022 sở GDĐT Đồng Nai
Thứ Hai ngày 22 tháng 11 năm 2021, sở Giáo dục và Đào tạo Đồng Nai tổ chức kỳ thi chọn đội tuyển học sinh giỏi THPT môn Toán học dự thi cấp Quốc gia năm học 2021 – 2022. Đề chọn đội tuyển thi HSG QG môn Toán năm 2021 – 2022 sở GD&ĐT Đồng Nai gồm 05 bài toán dạng tự luận, thời gian làm bài 180 phút.
Đề chọn đội tuyển HSG Toán 12 năm 2021 - 2022 sở GDĐT Bà Rịa - Vũng Tàu
Đề chọn đội tuyển HSG Toán 12 năm 2021 – 2022 sở GD&ĐT Bà Rịa – Vũng Tàu gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 180 phút, kỳ thi được diễn ra vào ngày 24 tháng 11 năm 2021. Trích dẫn đề chọn đội tuyển HSG Toán 12 năm 2021 – 2022 sở GD&ĐT Bà Rịa – Vũng Tàu : + Cho tam giác ABC nhọn, không cân, nội tiếp đường tròn tâm O và có các đường cao AD, BE, CF cắt nhau tại H. Gọi O1 là điểm đối xứng của O qua đường thẳng BC. AO1 cắt BC tại L, DE cắt HC tại M, DF cắt HB tại N. a) Chứng minh đường tròn ngoại tiếp tam giác DMN và đường tròn đường kính AL tiếp xúc nhau. b) Tiếp tuyến tại D của đường tròn đường kính AL cắt EF tại K. Chứng minh KH = KD. + Cho các số nguyên dương a, b, c phân biệt. Chứng minh tồn tại số nguyên n sao cho a + n, b + n, c + n là các số đôi một nguyên tố cùng nhau. + Trên mặt phẳng ta vẽ 3333 đường tròn đôi một khác nhau và có bán kính bằng nhau. Chứng minh rằng luôn chọn ra được trong số đó 34 đường tròn mà các đường tròn này đôi một có điểm chung hoặc đôi một không có điểm chung.
Đề chọn đội tuyển HSG QG môn Toán năm 2022 trường chuyên Hùng Vương - Bình Dương
Đề thi chọn đội tuyển học sinh giỏi Quốc gia môn Toán năm học 2021 – 2022 trường THPT chuyên Hùng Vương – Bình Dương gồm 02 trang với 07 bài toán dạng tự luận, kỳ thi được diễn ra trong hai ngày. Trích dẫn đề chọn đội tuyển HSG QG môn Toán năm 2022 trường chuyên Hùng Vương – Bình Dương : + Cho tam giác ABC nhọn, không cân có các đường cao BE, CF cắt nhau tại H. Lấy điểm X trên đường thẳng BH và điểm Y trên đường thẳng CH sao cho tứ giác MXHY là hình bình hành. Gọi R là giao điểm của các đường thẳng XY, EF. a) Chứng minh rằng AR song song với BC. b) Chứng minh rằng AH là trục đẳng phương của đường tròn ngoại tiếp tam giác BHY và tam giác CHX. + Thầy chủ nhiệm đội tuyển đăng ký cho n học sinh tham gia các buổi học chuyên đề của viện Toán với tổng cộng m buổi. Kết thúc khóa học, các học sinh sẽ chia sẻ bài cho nhau cùng học. Biết rằng mỗi buổi, thấy đăng ký cho đúng 3 học sinh và không có 2 bạn nào học chung 2 buổi trở lên. a) Giả sử m = 7, tìm giá trị nhỏ nhất của n. b) Giả sử n = 15 và khi đăng ký xong thì Ban tổ chức ra thông báo mới là tối đa 10 bạn được tham gia. Hỏi thấy có cách nào loại đi 5 học sinh nào đó (và giữ nguyên buổi đăng ký của các học sinh khác) mà đội tuyển vẫn có đầy đủ bài của tất cả các buổi học được hay không? + Chứng minh rằng không tồn tại dãy số thực (xn) thỏa mãn x1 = 2 và với mọi số nguyên dương n.
Đề chọn đội tuyển thi HSG QG môn Toán năm 2021 - 2022 sở GDĐT Ninh Thuận
Đề chọn đội tuyển thi HSG QG môn Toán năm 2021 – 2022 sở GD&ĐT Ninh Thuận gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 180 phút.