Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HK1 Toán 11 năm 2021 - 2022 trường THPT Lương Ngọc Quyến - Thái Nguyên

Đề thi HK1 Toán 11 năm 2021 – 2022 trường THPT Lương Ngọc Quyến – Thái Nguyên gồm 35 câu trắc nghiệm (07 điểm) và 04 câu tự luận (03 điểm), thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi HK1 Toán 11 năm 2021 – 2022 trường THPT Lương Ngọc Quyến – Thái Nguyên : + Thầy giáo có 10 câu hỏi trắc nghiệm, trong đó có 6 câu đại số và 4 câu hình học. Thầy gọi bạn Nam lên trả bài bằng cách chọn lấy ngẫu nhiên 3 câu hỏi trong 10 câu hỏi trên để trả lời. Xác suất bạn Nam chọn ít nhất có một câu hình học là? + Biển đăng kí xe ô tô gồm 8 kí tự trong đó có hai kí tự đầu tiên là hai chữ cái trong số 26 chữ cái (không dùng các chữ I và O) và 6 kí tự tiếp theo là các chữ số (với chữ số đầu tiên khác 0). Hỏi số ô tô được đăng kí nhiều nhất có thể là bao nhiêu? + Có bao nhiêu số tự nhiên có 9 chữ số đôi một khác nhau sao cho có mặt đồng thời bốn chữ số 4; 5; 6; 7 và bốn chữ số đó đôi một không kề nhau? + Cho hình chóp tứ giác S.ABCD có đáy là hình thang với AD là đáy lớn và P là một điểm trên cạnh SD. Gọi M N lần lượt là trung điểm của các cạnh AB BC. Xác định thiết diện của hình chóp cắt bởi (MNP). + Một lớp học có 15 học sinh nam và 20 học sinh nữ. Số cách chọn ra một học sinh trong lớp học này đi dự trại hè của trường là?

Nguồn: toanmath.com

Đọc Sách

Đề thi học kỳ 1 Toán 11 năm học 2017 - 2018 trường THPT Nhân Chính - Hà Nội
Đề thi học kỳ 1 Toán 11 năm học 2017 – 2018 trường THPT Nhân Chính – Hà Nội gồm 30 câu hỏi trắc nghiệm, thời gian làm bài 60 phút. Bạn đọc có thể theo dõi các đề thi HK1 Toán 11 được cập nhật thường xuyên tại đây.
Đề thi HKI Toán 11 không chuyên năm học 2017 - 2018 trường Phổ Thông Năng Khiếu - TP. HCM
Đề thi HKI Toán 11 không chuyên năm học 2017 – 2018 trường Phổ Thông Năng Khiếu – TP. HCM gồm 6 bài toán tự luận, thời gian làm bài 90 phút.
Đề thi HK1 Toán 11 năm học 2017 - 2018 trường THPT Hoài Đức A - Hà Nội
Đề thi HK1 Toán 11 năm học 2017 – 2018 trường THPT Hoài Đức A – Hà Nội gồm 20 câu hỏi trắc nghiệm và 4 bài toán tự luận, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi : + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi I, J lần lượt là trọng tâm tam giác SCD và tam giác SAB. Chọn kết quả sai: A. Thiết diện tạo bởi mặt phẳng (ABI) và hình chóp S.ABCD là hình bình hành B. Đường thẳng IJ song song với mặt phẳng (SCB) C. Giao điểm của đường thẳng IJ và mặt phẳng (SAC) là giao điểm của đường thẳng IJ và đường thẳng SO D. Đường thẳng IJ song song với mặt phẳng (ABCD) [ads] + Một hộp chứa 12 viên bi, trong đó có năm viên bi màu đỏ được đánh số từ 1 đến 5, bốn viên bi màu vàng được đánh số từ 1 đến 4, ba viên bi màu xanh được đánh số từ 1 đến 3. Lấy ngẫu nhiên đồng thời 2 viên bi từ hộp. Tính xác suất để 2 bi lấy được vừa khác màu vừa khác số. + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm các cạnh AB và SD. a) Tìm giao tuyến của mặt phẳng (SAC) và mặt phẳng (SDM). Tìm giao điểm H của đường thẳng SA và mặt phẳng (MNC) b) Chứng minh các đường thẳng CM, AD, HN đồng quy c) Chứng minh đường thẳng MN song song với (SBC) Bạn đọc có thể thường xuyên theo dõi các đề thi HK1 Toán 11 cập nhật thường xuyên tại đây.
Đề thi HK1 Toán 11 năm học 2017 - 2018 trường THPT Ân Thi - Hưng Yên
Đề thi HK1 Toán 11 năm học 2017 – 2018 trường THPT Ân Thi – Hưng Yên gồm 20 câu hỏi trắc nghiệm và 5 bài toán tự luận, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi HK1 Toán 11 : + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M là trung điểm của SA, P là điểm trên cạnh SD sao cho 3.SP = PD. a) Tìm giao điểm I của MP với mặt phẳng (ABCD). b) Tìm giao tuyến của hai mặt phẳng (MPC) và (SAB). c) Gọi Q là giao điểm của AB và (MPC), tính tỉ số QA/QB. [ads] + Trong không gian, các yếu tố nào sau đây xác định một mặt phẳng duy nhất? A. Hai đường thẳng cắt nhau. B. Ba điểm phân biệt. C. Một điểm và một đường thẳng. D. Bốn điểm không đồng phẳng. + Từ một hộp có 6 viên bi màu xanh khác nhau và 7 viên bi màu đỏ khác nhau, lấy ngẫu nhiên 5 viên bi. Tính xác suất sao cho: a) Lấy được 2 viên bi màu xanh và 3 viên bi màu đỏ. b) Lấy được nhiều nhất 2 viên bi màu xanh.