Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề các phương pháp tính tích phân - Nguyễn Duy Khôi

Ngày nay phép tính vi tích phân chiếm một vị trí hết sức quan trọng trong Toán học, tích phân được ứng dụng rộng rãi như để tính diện tích hình phẳng, thể tích khối tròn xoay, nó còn là đối tượng nghiên cứu của giải tích, là nền tảng cho lý thuyết hàm, lý thuyết phương trình vi phân, phương trình đạo hàm riêng… Ngoài ra phép tính tích phân còn được ứng dụng rộng rãi trong Xác suất, Thống kê, Vật lý, Cơ học, Thiên văn học, Y học … Phép tính tích phân được bắt đầu giới thiệu cho các em học sinh ở lớp 12, tiếp theo được phổ biến trong tất cả các trường đại học cho khối sinh viên năm thứ nhất và năm thứ hai trong chương trình học đại cương. Hơn nữa trong các kỳ thi Tốt nghiệp THPT và kỳ thi Tuyển sinh đại học phép tính tích phân hầu như luôn có trong các đề thi môn Toán của khối A, khối B và cả khối D. Bên cạnh đó, phép tính tích phân cũng là một trong những nội dung để thi tuyển sinh đầu vào hệ Thạc sĩ và nghiên cứu sinh. [ads] Với tầm quan trọng của phép tính tích phân, chính vì thế mà tôi viết một số kinh nghiệm giảng dạy tính tích phân của khối 12 với chuyên đề “TÍNH TÍCH PHÂN BẰNG PHƯƠNG PHÁP PHÂN TÍCH – ĐỔI BIẾN SỐ VÀ TỪNG PHẦN” để phần nào củng cố, nâng cao cho các em học sinh khối 12 để các em đạt kết quả cao trong kỳ thi Tốt nghiệp THPT và kỳ thi Tuyển sinh đại học và giúp cho các em có nền tảng trong những năm học đại cương của đại học. Trong phần nội dung chuyên đề dưới đây, tôi xin được nêu ra một số bài tập minh họa cơ bản tính tích phân chủ yếu áp dụng phương pháp phân tích, phương pháp đổi biến số, phương pháp tích phân từng phần. Các bài tập đề nghị là các đề thi Tốt nghiệp THPT và đề thi tuyển sinh đại học Cao đẳng của các năm để các em học sinh rèn luyện kỹ năng tính tích phân và phần cuối của chuyên đề là một số câu hỏi trắc nghiệm tích phân. Tuy nhiên với kinh nghiệm còn hạn chế nên dù có nhiều cố gắng nhưng khi trình bày chuyên đề này sẽ không tránh khỏi những thiếu sót, rất mong được sự góp ý chân tình của quý Thầy Cô trong Hội đồng bộ môn Toán Sở Giáo dục và đào tạo tỉnh Đồng Nai. Nhân dịp này tôi xin cảm ơn Ban lãnh đạo nhà trường tạo điều kiện tốt cho tôi và cảm ơn quý thầy cô trong tổ Toán trường Nam Hà, các đồng nghiệp, bạn bè đã đóng góp ý kiến cho tôi hoàn thành chuyên đề này. Tôi xin chân thành cám ơn.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề trắc nghiệm ứng dụng tích phân tính thể tích
Tài liệu gồm 33 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề ứng dụng tích phân tính thể tích, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 3. 1. Tính thể tích vật thể. 2. Tính thể tích vật tròn xoay sinh bởi diện tích S quay quanh trục Ox. 3. Tính thể tích vật tròn xoay sinh bởi diện tích S quay quanh trục Oy. 4. Ứng dụng tính thể tích khối cầu, khối chỏm cầu và một số hình đặc biệt. 5. Hệ thống Ví dụ minh họa. BÀI TẬP TỰ LUYỆN. LỜI GIẢI CHI TIẾT.
Chuyên đề trắc nghiệm ứng dụng tích phân tính diện tích
Tài liệu gồm 45 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề ứng dụng tích phân tính diện tích, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 3. A. LÝ THUYẾT. 1. Công thức tính diện tích của hình phẳng giới hạn bởi hai đồ thị hàm số. 2. Ứng dụng tính diện tích hình tròn và hình Elip. B. VÍ DỤ MINH HỌA. C. BÀI TẬP TỰ LUYỆN. D. LỜI GIẢI CHI TIẾT.
Chuyên đề trắc nghiệm tích phân đặc biệt và nâng cao
Tài liệu gồm 21 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề tích phân đặc biệt và nâng cao, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 3. 1. Một số dạng tích phân đặc biệt. + Mệnh đề 1: Nếu f(x) là hàm số chẵn và liên tục trên đoạn [−a;a] thì a a a 0 f (x) dx 2 f (x) dx. + Mệnh đề 2: Nếu f(x) là hàm số lẻ và liên tục trên đoạn [−a;a] thì a a f (x) dx 0. + Mệnh đề 3: Nếu f(x) là hàm số chẵn và liên tục trên đoạn [−a;a] thì a a x a 0 f(x) dx f (x) dx m 1. + Mệnh đề 4: Nếu f(x) là hàm số liên tục trên [0;1] thì 2 2 0 0 f (sinx) dx f (cosx) dx. 2. Một số dạng tích phân vận dụng cao. + Dạng 1. Bài toán tích phân liên quan đến các biểu thức sau. + Dạng 2. Bài toán tích phân liên quan đến các biểu thức sau. + Dạng 3. Bài toán tổng quát. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Chuyên đề trắc nghiệm tích phân hàm hữu tỉ và hàm lượng giác
Tài liệu gồm 21 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề tích phân hàm hữu tỉ và hàm lượng giác, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 3.