Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL THPT Quốc gia 2019 môn Toán 12 lần 2 trường Lê Xoay - Vĩnh Phúc

chia sẻ đến thầy, cô và các em học sinh khối 12 nội dung đề KSCL THPT Quốc gia 2019 môn Toán 12 lần 2 trường Lê Xoay – Vĩnh Phúc, kỳ thi được diễn ra trong giai đoạn giữa học kỳ 2 năm học 2018 – 2019, đây là thời điểm thích hợp để tổ chức các kỳ thi thử THPT Quốc gia môn Toán nhằm giúp các em có sự chuẩn bị kỹ lưỡng về mặt kiến thức Toán lẫn sự tự tin để bước vào kỳ thi chính thức với một tâm thế thoải mái nhất. Đề KSCL THPT Quốc gia 2019 môn Toán 12 lần 2 trường Lê Xoay – Vĩnh Phúc có mã đề 132, đề được biên soạn bám sát cấu trúc đề tham khảo THPT Quốc gia môn Toán năm 2019 của Bộ Giáo dục và Đào tạo, đề gồm 50 câu hỏi và bài toán dạng trắc nghiệm, học sinh có 90 phút để làm bài thi, đề thi có đáp án. [ads] Trích dẫn đề KSCL THPT Quốc gia 2019 môn Toán 12 lần 2 trường Lê Xoay – Vĩnh Phúc : + Cho chuyển động thẳng xác định bởi phương trình s(t) = t^3 – 3t^2 – 2/5t + 3 (thời gian tính bằng giây, quãng đường tính bằng m). Khẳng định nào sau đây đúng? A. Gia tốc của chuyển động bằng 0 khi t = 0. B. Gia tốc của chuyển động tại thời điểm t = 4 là a = 18 m/s2. C. Vận tốc của chuyển động tại thời điểm t = 2 là v = 18 m/s. D. Vận tốc của chuyển động bằng 0 khi t = 0. + Một hội nghị gồm 6 đại biểu nước Anh, 7 đại biểu nước Pháp và 7 đại biểu nước Nga, trong đó mỗi nước có 2 đại biểu là nam. Chọn ngẫu nhiên ra 4 đại biểu. Xác suất chọn được 4 đại biểu để trong đó mỗi nước đều có ít nhất một đại biểu và có cả đại biểu nam và đại biểu nữ bằng? + Để đủ tiền mua nhà, anh Hoàng vay ngân hàng 500 triệu đồng theo phương thức trả góp với lãi suất 0,85%/tháng. Nếu sau mỗi tháng, kể từ thời điểm vay, anh Hoàng trả nợ cho ngân hàng số tiền cố định là 10 triệu đồng bao gồm cả tiền lãi vay và tiền gốc. Biết rằng phương thức trả lãi và gốc không thay đổi trong suốt quá trình anh Hoàng trả nợ. Hỏi sau bao nhiêu tháng thì anh trả hết nợ ngân hàng? (Tháng cuối có thể trả dưới 10 triệu đồng).

Nguồn: toanmath.com

Đọc Sách

Đề kiểm tra chất lượng lớp 12 môn Toán năm 2022 2023 trường THPT chuyên Thái Bình
Nội dung Đề kiểm tra chất lượng lớp 12 môn Toán năm 2022 2023 trường THPT chuyên Thái Bình Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề kiểm tra chất lượng cuối năm môn Toán lớp 12 năm học 2022 – 2023 trường THPT chuyên Thái Bình, tỉnh Thái Bình (mã đề 132); kỳ thi được diễn ra vào Chủ Nhật ngày 07 tháng 05 năm 2023. Trích dẫn Đề kiểm tra chất lượng Toán lớp 12 năm 2022 – 2023 trường THPT chuyên Thái Bình : + Một hộp chứa 25 quả cầu gồm 10 quả màu đỏ được đánh số từ 1 đến 10 và 15 quả màu xanh được đánh số từ 1 đến 15. Lấy ngẫu nhiên hai quả từ hộp đó, xác suất để lấy được hai quả khác màu đồng thời tích hai số ghi trên chúng là số chẵn bằng? + Cho khối nón có đỉnh S đáy là hình tròn (O;R), chiều cao bằng 8 và thể tích bằng 800/3. Gọi A và B là hai điểm thuộc đường tròn đáy sao cho AB = 12. Gọi C, D lần lượt là các điểm đối xứng với A, B qua O. Khoảng cách giữa hai đường thẳng CD và SA bằng? + Trong không gian Oxyz, cho A(0;0;10), B(3;4;6). Xét các điểm M thay đổi sao cho MB luôn vuông góc OA và tam giác OAM có diện tích bằng 15. Giá trị lớn nhất của độ dài đoạn thẳng MB thuộc khoảng nào dưới đây?
Đề khảo sát chất lượng lớp 12 môn Toán lần 2 năm 2022 2023 sở GD ĐT Thanh Hóa
Nội dung Đề khảo sát chất lượng lớp 12 môn Toán lần 2 năm 2022 2023 sở GD ĐT Thanh Hóa Bản PDF Nhằm chuẩn bị cho kỳ thi tốt nghiệp THPT 2023, sáng thứ Ba ngày 25 tháng 04 năm 2023, sở Giáo dục và Đào tạo tỉnh Thanh Hóa tổ chức kỳ thi khảo sát chất lượng học sinh lớp 12 lần 2 năm học 2022 – 2023. Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng môn Toán lớp 12 lần 2 năm học 2022 – 2023 sở GD&ĐT Thanh Hóa. Trích dẫn Đề khảo sát chất lượng Toán lớp 12 lần 2 năm 2022 – 2023 sở GD&ĐT Thanh Hóa : + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a = 2 cm, đường thẳng SA vuông góc với mặt phẳng đáy (tham khảo hình vẽ). Tính khoảng cách từ trọng tâm G của tam giác SAB đến mặt phẳng (SAC). + Trong không gian Oxyz, cho bốn điểm A(2;1;4), B(2;5;4), C(-5/2;5;-1), D(-3;1;-4). Các điểm M và N thỏa mãn MA2 + 3MB2 = 48 và ND2 = (NC + BC).ND. Tìm độ dài ngắn nhất của đoạn thẳng MN. + Cho hình nón (N) có đỉnh S, chiều cao h = 2. Mặt phẳng (P) qua đỉnh S cắt hình nón (N) theo thiết diện là tam giác đều. Khoảng cách từ tâm đáy hình nón đến mặt phẳng (P) bằng 3. Thể tích khối nón giới hạn bởi hình nón (N) bằng?