Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phương pháp giải các dạng toán chuyên đề số hữu tỉ - số thực

Tài liệu gồm 42 trang, tổng hợp lý thuyết SGK, phân dạng và hướng dẫn giải các dạng toán chuyên đề số hữu tỉ – số thực trong chương trình Đại số 7. Khái quát nội dung tài liệu phương pháp giải các dạng toán chuyên đề số hữu tỉ – số thực: BÀI 1 . TẬP HỢP Q CÁC SỐ HỮU TỈ. + Dạng 1. Sử dụng các kí hiệu. + Dạng 2. Biểu diễn số hữu tỉ. + Dạng 3. So sánh các số hữu tỉ. BÀI 2 . CỘNG TRỪ SỐ HỮU TỈ. + Dạng 1. Cộng trừ hai số hữu tỉ. + Dạng 2. Viết một số hữu tỉ dưới dạng tổng hoặc hiệu của hai số hữu tỉ. + Dạng 3. Tính tổng hoặc hiệu của nhiều số hữu tỉ. + Dạng 4. Tìm số hạng chưa biết trong một tổng hoặc một hiệu. + Dạng 5. Tính giá trị của biểu thức có nhiều dấu ngoặc. + Dạng 6. Tìm phần nguyên, phần lẻ của số hữu tỉ. BÀI 3 . NHÂN, CHIA SỐ HỮU TỈ. + Dạng 1. Nhân, chia hai số hữu tỉ. + Dạng 2. Viết một số hữu tỉ dưới dạng tích hoặc thương của hai số hữu tỉ. + Dạng 3. Thực hiện các phép tính với nhiều số hữu tỉ. + Dạng 4. Lập biểu thức từ các số cho trước. BÀI 4 . GIÁ TRỊ TUYỆT ĐỐI CỦA MỘT SỐ HỮU TỈ. CỘNG, TRỪ, NHÂN, CHIA SỐ THẬP PHÂN. + Dạng 1. Các bài tập về dấu giá trị tuyệt đối của một số hữu tỉ. + Dạng 2. Biểu diễn số hữu tỉ bằng các phân số khác nhau. + Dạng 3. Cộng, trừ, nhân, chia các số thập phân. + Dạng 4. So sánh các số hữu tỉ. + Dạng 5. Sử dụng máy tình bỏ túi để làm các phép tính cộng, trừ, nhân, chia số thập phân. BÀI 5 & 6 . LŨY THỪA CỦA MỘT SỐ HỮU TỈ. + Dạng 1. Sử dụng định nghĩa của lũy thừa với số mũ tự nhiên. + Dạng 2. Tính tích và thương của hai lũy thừa cùng cơ số. + Dạng 3. Tính lũy thừa của một lũy thừa. + Dạng 4. Tính lũy thừa của một tích, lũy thừa của một thương. + Dạng 5. Tìm số mũ của một lũy thừa. + Dạng 6. Tìm cơ số của một lũy thừa. + Dạng 7. Tính giá trị của biểu thức. [ads] BÀI 7 . TỈ LỆ THỨC. + Dạng 1. Thay tỉ số giữa các số hữa tỉ bằng tỉ số giữa các số nguyên. + Dạng 2. Lập tỉ lệ thức từ các tỉ số cho trước. + Dạng 3. Lập tỉ lệ thức từ đẳng thức cho trước, từ một tỉ lệ thức cho trước, từ các số cho trước. + Dạng 4. Tìm số hạng chưa biết của một tỉ lệ thức. BÀI 8 . TÍNH CHẤT CỦA DÃY TỈ SỐ BẰNG NHAU. + Dạng 1. Tìm hai số biết tổng (hoặc hiệu) và tỉ số của chúng. + Dạng 2. Chia một số thành các phần tỉ lệ với các số cho trước. + Dạng 3. Tìm hai số biết tích và tỉ số của chúng. + Dạng 4. Chứng minh đẳng thức từ một tỉ lệ thức cho trước. + Dạng 5. Thay tỉ số giữa các số hữu tỉ bằng tỉ số giữa các số nguyên. + Dạng 6. Tìm số hạng chưa biết trong một tỉ lệ thức. BÀI 9 . SỐ THẬP PHÂN HỮU HẠN. SỐ THẬP PHÂN VÔ HẠN TUẦN HOÀN. + Dạng 1. Nhận biết một phân số viết được dưới dạng số thập phân hữu hạn hoặc vô hạn tuần hoàn. + Dạng 2. Viết một tỉ số hoặc một phân số dưới dạng số thập phân. + Dạng 3. Viết số thập phân hữu hạn dưới dạng phân số tối giản. + Dạng 4. Viết số thập phân vô hạn tuần hoàn dưới dạng phân số tối giản. BÀI 10 . LÀM TRÒN SỐ. + Dạng 1. Làm tròn các số theo một yêu cầu cho trước. + Dạng 2. Giải bài toán rồi làm tròn kết quả. + Dạng 3. Áp dụng quy ước làm tròn số để ước lượng kết quả các phép tính. BÀI 11 . SỐ VÔ TỈ. KHÁI NIỆM VỀ CĂN BẬC HAI. + Dạng 1. Liên hệ giữa lũy thừa bậc hai và căn bậc hai. + Dạng 2. Tìm căn bậc hai của một số cho trước. + Dạng 3. Tìm một số biết căn bậc hai của nó. + Dạng 4. Sử dụng máy tính bỏ túi để tính căn bậc hai của một số cho trước. BÀI 12 . SỐ THỰC. + Dạng 1. Câu hỏi và bài tập về định nghĩa các tập hợp số. + Dạng 2. So sánh các số thực. + Dạng 3. Tìm số chưa biết trong một đẳng thức. + Dạng 4. Tìm giá trị của biểu thức. ÔN TẬP CHƯƠNG 1.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề tính chất ba đường trung tuyến của tam giác
Tài liệu gồm 11 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề tính chất ba đường trung tuyến của tam giác, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 7 trong quá trình học tập chương trình Toán 7 phần Hình học chương 3: Quan hệ giữa các yếu tố trong tam giác, các đường đồng quy trong tam giác. Mục tiêu : Kiến thức: + Phát biểu được định nghĩa đường trung tuyến của tam giác. + Phát biểu được tính chất ba đường trung tuyến của tam giác. Kĩ năng: + Vẽ được các đường trung tuyến của tam giác. + Vận dụng được các định nghĩa và tính chất về đường trung tuyến. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Sử dụng tính chất trọng tâm tam giác. – Ba đường trung tuyến của tam giác đồng quy tại một điểm. Điểm này gọi là trọng tâm của tam giác. – Trọng tâm của tam giác cách mỗi đỉnh một khoảng bằng 2 3 độ dài đường trung tuyến đi qua đỉnh ấy. Bước 1. Xác định trọng tâm nằm trên đường trung tuyến nào. Bước 2. Sử dụng linh hoạt tỉ lệ khoảng cách từ trọng tâm đến hai đầu đoạn thẳng trung tuyến. Dạng 2 : Chứng minh một điểm là trọng tâm tam giác. Sử dụng tính chất trọng tâm. Chẳng hạn để chứng minh G là trọng tâm tam giác ABC, có ba đường trung tuyến AD, BE, CF thì ta chứng minh. Cách 1. G AD và 2 3 GA AD hoặc G BE và 2 3 GB BE hoặc G CF và 2 3 GC CF. Cách 2. Chứng minh G là giao điểm của hai trong ba đường trung tuyến của tam giác ABC. Dạng 3 : Đường trung tuyến của tam giác cân, tam giác đều, tam giác vuông. Chú ý đến tính chất của tam giác cân, tam giác đều và tam giác vuông.
Chuyên đề quan hệ giữa ba cạnh của một tam giác, bất đẳng thức tam giác
Tài liệu gồm 08 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề quan hệ giữa ba cạnh của một tam giác, bất đẳng thức tam giác, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 7 trong quá trình học tập chương trình Toán 7 phần Hình học chương 3: Quan hệ giữa các yếu tố trong tam giác, các đường đồng quy trong tam giác. Mục tiêu : Kiến thức: + Phát biểu được định lí và hệ quả của bất đẳng thức tam giác. Kĩ năng: + Vận dụng được định lí và hệ quả của bất đẳng thức tam giác trong các bài toán. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Sử dụng điều kiện tồn tại một tam giác dựa vào yếu tố độ dài ba cạnh. – Ba đoạn thẳng a, b, c lập thành một tam giác nếu. – Trong trường hợp xác định được a là số lớn nhất trong ba số a, b, c thì điều kiện tồn tại tam giác chỉ cần a b c. Bước 1. Dựa vào bất đẳng thức tam giác xét các trường hợp. Bước 2. Lựa chọn giá trị thích hợp. Dạng 2 : Chứng minh các bất đẳng thức về độ dài. – Sử dụng bất đẳng thức tam giác và các biến đổi về bất đẳng thức. – Cộng cùng một số vào hai vế của bất đẳng thức. – Cộng từng vế hai bất đẳng thức cùng chiều.
Chuyên đề quan hệ giữa đường vuông góc và đường xiên, đường xiên và hình chiếu
Tài liệu gồm 15 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề quan hệ giữa đường vuông góc và đường xiên, đường xiên và hình chiếu, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 7 trong quá trình học tập chương trình Toán 7 phần Hình học chương 3: Quan hệ giữa các yếu tố trong tam giác, các đường đồng quy trong tam giác. Mục tiêu : Kiến thức: + Phân biệt được đường vuông góc, đường xiên, hình chiếu. + Phát biểu được quan hệ giữa đường vuông góc và đường xiên, đường xiên và hình chiếu. Kĩ năng: + Vận dụng được mối quan hệ giữa đường vuông góc và đường xiên, đường xiên và hình chiếu trong bài tập. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : So sánh hai đường xiên hoặc hai hình chiếu. – Định lí: Trong hai đường xiên kẻ từ một điểm nằm ngoài một đường thẳng đến đường thẳng đó thì: + Đường xiên nào có hình chiếu lớn hơn thì lớn hơn. + Đường xiên nào lớn hơn thì có hình chiếu lớn hơn. – Thực hiện theo hai bước: + Bước 1. Xác định xem hai đoạn thẳng cần so sánh là đường xiên hay hình chiếu của đường xiên lên đường thẳng: Nếu là đường xiên thì cần so sánh hai hình chiếu của chúng (dựa vào giả thiết bài toán); Nếu là hình chiếu của hai đường xiên thì cần so sánh hai đường xiên (dựa vào giả thiết bài toán). + Bước 2. So sánh hai đoạn thẳng dựa vào định lí đường xiên – hình chiếu. Dạng 2 : Quan hệ giữa đường vuông góc và đường xiên. Sử dụng định lí: “Đường vuông góc ngắn hơn mọi đường xiên kẻ từ một điểm đến cùng một đường thẳng”.
Chuyên đề quan hệ giữa góc và cạnh đối diện trong một tam giác
Tài liệu gồm 10 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề quan hệ giữa góc và cạnh đối diện trong một tam giác, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 7 trong quá trình học tập chương trình Toán 7 phần Hình học chương 3: Quan hệ giữa các yếu tố trong tam giác, các đường đồng quy trong tam giác. Mục tiêu : Kiến thức: + Trình bày được định lí về quan hệ giữa góc và cạnh đối diện trong một tam giác. + Áp dụng được định lí về quan hệ giữa góc và cạnh đối diện trong một tam giác để so sánh độ dài các cạnh, số đo góc của tam giác đó. Kĩ năng: + Biết vận dụng các định lí để giải quyết bài toán. + Vận dụng vẽ hình theo đúng yêu cầu bài toán, nhận biết được các tính chất qua hình vẽ. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1: So sánh hai góc trong một tam giác. + Để so sánh hai góc trong một tam giác, ta so sánh hai cạnh đối diện với hai góc đó. + Sử dụng định lí: “Trong một tam giác, góc có cạnh đối diện lớn hơn thì lớn hơn”. Dạng 2: So sánh hai cạnh trong một tam giác. + Để so sánh hai cạnh trong một tam giác, ta so sánh hai góc đối diện với hai cạnh đó. + Sử dụng định lí: “Trong một tam giác, cạnh đối diện với góc lớn hơn thì lớn hơn”.