Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử tuyển sinh vào lớp 10 môn Toán năm 2022 sở GDĐT Lạng Sơn

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử tuyển sinh vào lớp 10 môn Toán THPT năm học 2022 – 2023  sở Giáo dục và Đào tạo tỉnh Lạng Sơn; kỳ thi được diễn ra vào sáng thứ Năm ngày 12 tháng 05 năm 2022. Trích dẫn đề thi thử tuyển sinh vào lớp 10 môn Toán năm 2022 sở GD&ĐT Lạng Sơn : + Cho phương trình bậc hai với m là tham số. a) Chỉ ra các hệ số abc của phương trình. b) Chứng minh rằng với mọi m thì phương trình đã cho luôn có hai nghiệm phân biệt. Khi đó tìm m để. + Cho đường tròn tâm O đường kính AB. Trên tia AB lấy điểm C sao cho AC > AB. Dựng đường thẳng d qua C và vuông góc với AB. Trên đường tròn (O) lấy điểm M (M khác A và B). Gọi H và K lần lượt là giao điểm của AM và MB với d. Gọi N là giao điểm của AK với đường tròn (O). 1) Chứng minh tứ giác BCKN nội tiếp đường tròn. 2) Chứng minh CAH = CNB. 3) Chứng minh BH vuông góc AK. 4) Chứng minh rằng khi M di chuyển trên đường tròn (O) (với M khác A và B) thì AM.AH + AN.AK luôn có giá trị không đổi. + Lúc 7 giờ, bạn Dũng đi xe đạp từ nhà (điểm A) đến trường (điểm B) phải leo lên và xuống một con dốc (như hình vẽ bên dưới). Cho biết đoạn thẳng AB = 658m, góc A = 9°, góc B = 4°. Hỏi bạn Dũng đến trường lúc nào (giờ, phút)? Biết rằng vận tốc trung bình khi lên dốc là 5km/h và vận tốc trung bình khi xuống dốc là 16km/h (các kết quả được làm tròn đến chữ số thập phân thứ ba).

Nguồn: toanmath.com

Đọc Sách

Đề Toán tuyển sinh năm 2019 trường PTNK TP HCM (Vòng 2)
Nội dung Đề Toán tuyển sinh năm 2019 trường PTNK TP HCM (Vòng 2) Bản PDF - Nội dung bài viết Đề Toán tuyển sinh lớp 10 năm 2019 trường PTNK TP HCM (Vòng 2) Đề Toán tuyển sinh lớp 10 năm 2019 trường PTNK TP HCM (Vòng 2) Sytu xin được giới thiệu đến quý thầy cô giáo và các em học sinh đề Toán tuyển sinh lớp 10 năm 2019 trường PTNK TP HCM (Vòng 2). Đề này dành cho các thí sinh dự thi vào các lớp chuyên Toán. Đề Toán tuyển sinh lớp 10 năm 2019 trường PTNK TP HCM (Vòng 2) gồm 5 bài toán, thời gian làm bài là 150 phút (không tính thời gian giám thị coi thi phát đề). Trích dẫn đề Toán tuyển sinh lớp 10 năm 2019 trường PTNK TP HCM (Vòng 2): Trong một buổi gặp gỡ giao lưu giữa các học sinh đến từ n quốc gia, cứ 10 học sinh bất kỳ sẽ có ít nhất 3 học sinh đến từ cùng một quốc gia. a) Gọi k là số các quốc gia có đúng 1 học sinh tham dự buổi gặp gỡ. Chứng minh rằng n < (k + 10)/2. b) Biết rằng số các học sinh tham dự buổi gặp gỡ là 60. Chứng minh rằng có thể tìm được ít nhất là 15 học sinh đến từ cùng một quốc gia. Cho n là số tự nhiên, n > 3. Chứng minh rằng 2^n + 1 không chia hết cho 2^m - 1 với mọi số tự nhiên m sao cho 2 < m ≤ n. Tìm tất cả những số tự nhiên n sao cho 2^n + 1 chia hết cho 9.
Đề Toán tuyển sinh năm 2019 – 2020 trường chuyên Thái Bình (Vòng 1)
Nội dung Đề Toán tuyển sinh năm 2019 – 2020 trường chuyên Thái Bình (Vòng 1) Bản PDF - Nội dung bài viết Đề Toán tuyển sinh năm 2019 – 2020 trường chuyên Thái Bình (Vòng 1) Đề Toán tuyển sinh năm 2019 – 2020 trường chuyên Thái Bình (Vòng 1) Ngày 25 tháng 05 năm 2019, trường THPT chuyên Thái Bình, trực thuộc sở Giáo dục và Đào tạo tỉnh Thái Bình tổ chức kỳ thi Toán tuyển sinh vào lớp 10 khối THPT năm học 2019 – 2020. Đề thi chung được dành cho toàn bộ các thí sinh tham gia kỳ thi, đề thi gồm 1 trang, đề được biên soạn theo dạng đề tự luận với 6 bài toán, học sinh làm bài trong khoảng thời gian 120 phút (không kể thời gian giám thị coi thi phát đề), đề thi có lời giải chi tiết. Bài tuyển sinh Toán lớp 10 năm 2019 – 2020 trường chuyên Thái Bình (Vòng 1) chứa những câu hỏi thú vị và đa dạng. Một số điểm nổi bật trong đề bao gồm: 1. Bài toán về việc quyên góp sách của hai lớp 9A và 9B. Học sinh cần tính số học sinh mỗi lớp biết tổng số học sinh là 90 dựa trên số quyển sách mỗi lớp ủng hộ. 2. Bài toán về hai đường thẳng trên mặt phẳng tọa độ Oxy, yêu cầu tìm điều kiện để đường thẳng (d1) song song với (d2) và chứng minh một điểm cố định mà dường thẳng (d2) luôn đi qua với mọi giá trị của tham số m. 3. Bài toán về phương trình bậc hai và biểu thức có giá trị nhỏ nhất, học sinh cần tìm giá trị nhỏ nhất của biểu thức Q trong phạm vi các nghiệm của phương trình. Đề Toán tuyển sinh năm 2019 – 2020 trường chuyên Thái Bình (Vòng 1) không chỉ đánh giá kiến thức của học sinh mà còn đề cao khả năng tư duy logic, suy luận và giải quyết vấn đề. Đây là cơ hội để thí sinh thể hiện năng lực và sự sáng tạo của mình trong việc giải quyết các bài toán phức tạp.
Đề Toán tuyển sinh năm 2019 trường chuyên KHTN – Hà Nội (Vòng 2)
Nội dung Đề Toán tuyển sinh năm 2019 trường chuyên KHTN – Hà Nội (Vòng 2) Bản PDF - Nội dung bài viết Đề Toán tuyển sinh năm 2019 trường chuyên KHTN – Hà Nội (Vòng 2) Đề Toán tuyển sinh năm 2019 trường chuyên KHTN – Hà Nội (Vòng 2) Sytu xin giới thiệu đến quý thầy, cô giáo và các em học sinh đề Toán tuyển sinh lớp 10 năm 2019 trường chuyên KHTN – Hà Nội (Vòng 2). Đây là đề thi được thiết kế dành cho các thí sinh dự thi vào các lớp 10 chuyên Toán – Tin. Đề thi gồm 1 trang với 4 bài toán, thời gian làm bài là 90 phút. Trích dẫn đề Toán tuyển sinh lớp 10 năm 2019 trường chuyên KHTN – Hà Nội (Vòng 2): + Với x, y là các số thực dương thỏa mãn điều kiện 4x^2 + 4y^2 + 17xy + 5x + 5y ≥ 1, tìm giá trị nhỏ nhất của biểu thức: P = 17x^2 + 17y^2 + 16xy. + Cho tam giác ABC cân tại A, có đường tròn nội tiếp (I). Các điểm E, F theo thứ tự thuộc các cạnh CA, AB (E khác C và A; F khác B và A) sao cho EF tiếp xúc với đường tròn (I) tại điểm P. Gọi K, L lần lượt là hình chiếu vuông góc của E, F lên BC. Giả sử FK cắt EL tại điềm J. Gọi H là hình chiếu vuông góc của J lên BC. 1) Chứng minh rằng HJ là phân giác của EHF. 2) Ký hiệu S1 và S2 lần lượt là diện tích của các tứ giác BFJL và CEJK. Chứng minh rằng: S1/S2 = BF^2/CE^2. 3) Gọi D là trung điểm của cạnh BC. Chứng minh rằng ba điểm P, J, D thẳng hàng. + Cho M là tập tất cả 4039 Số nguyên liên tiếp từ -2019 đến 2019. Chứng minh rằng trong 2021 số đôi một phân biệt được chọn bất kì từ tập M luôn tồn tại 3 số đôi một phân biệt có tổng bằng 0.
Đề Toán tuyển sinh năm 2019 2020 trường chuyên Thái Bình (Vòng 2)
Nội dung Đề Toán tuyển sinh năm 2019 2020 trường chuyên Thái Bình (Vòng 2) Bản PDF - Nội dung bài viết Đề Toán tuyển sinh lớp 10 trường chuyên Thái Bình (Vòng 2) Đề Toán tuyển sinh lớp 10 trường chuyên Thái Bình (Vòng 2) Ngày 26 tháng 05 năm 2019, trường THPT chuyên tỉnh Thái Bình đã tổ chức kỳ thi tuyển sinh vào lớp 10 môn Toán cho năm học 2019 – 2020. Đề thi nhằm tuyển chọn các học sinh vào các lớp 10 chuyên Toán – Tin để chuẩn bị cho năm học mới. Đề Toán tuyển sinh lớp 10 năm 2019 – 2020 trường THPT chuyên Thái Bình (Vòng 2) bao gồm 5 bài toán dạng tự luận, thời gian làm bài 150 phút. Trong đề thi, có bài toán như sau: Chứng minh rằng tồn tại điểm I trong mặt phẳng tọa độ và 2019 số thực dương R1, R2 … R2019 sao cho có đúng k điểm nguyên nằm trong đường tròn (I;Rk) với mọi k là số nguyên dương không vượt quá 2019. Trong hình vuông ABCD nội tiếp đường tròn, chứng minh rằng tứ giác EPND nội tiếp một đường tròn, góc EKM = góc DKM, và tính độ dài đoạn thẳng AE khi M là trung điểm của AD. Tìm các nghiệm nguyên (x;y) của phương trình √x + √y = √2020. Đề thi tạo cơ hội cho các thí sinh thể hiện kiến thức và khả năng giải quyết vấn đề trong môn Toán, từ đó đạt kết quả cao và có cơ hội được chọn vào các lớp chuyên Toán – Tin tại trường THPT chuyên Thái Bình.