Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi MTCT Toán THPT năm 2022 2023 sở GD ĐT Vĩnh Long

Nội dung Đề học sinh giỏi MTCT Toán THPT năm 2022 2023 sở GD ĐT Vĩnh Long Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi cấp tỉnh giải toán bằng máy tính cầm tay môn Toán THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Vĩnh Long; kỳ thi được diễn ra vào ngày 09 tháng 04 năm 2023; đề thi có đáp án và hướng dẫn giải. Trích dẫn Đề học sinh giỏi MTCT Toán THPT năm 2022 – 2023 sở GD&ĐT Vĩnh Long : + Một người gửi triệu đồng vào ngân hàng với kì hạn tháng (quý), lãi suất một quý theo hình thức lãi kép. Sau đúng tháng, người đó lại gửi thêm triệu đồng với hình thức và lãi suất như trên. Hỏi sau năm tính từ lần gửi đầu tiên người đó nhận được số tiền gần với kết quả nào nhất? (làm tròn đến 1 chữ số thâp phân). + Cho tam giác ABC có AB 3 5 BC 5 3 CA 48. Gọi M là trung điểm của AC; N là điểm trên cạnh BC sao cho BC BN 3 và BM cắt AN tại I. Trên đường thẳng vuông góc với mặt phẳng ABC tại I, lấy điểm S sao cho SI 7. Tính gần đúng a) Độ dài các cạnh SA SB SC của tứ diện SABC (làm tròn đến 9 chữ số thâp phân). b) Chiều cao BK của tứ diện SABC (làm tròn đến 9 chữ số thâp phân). c) Bán kính R của mặt cầu ngoại tiếp tứ diện SABC (làm tròn đến 9 chữ số thâp phân). + Cho 2023 đường tròn đồng tâm nội tiếp trong 2023 hình vuông (dạng như hình vẽ). Tính gần đúng diện tích phần tô đậm, biết hình vuông lớn nhất có cạnh bằng 1 cm (làm tròn đến 5 chữ số thâp phân).

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn HSG Toán 12 THPT cấp tỉnh năm học 2017 - 2018 sở GD và ĐT Phú Thọ
Đề thi chọn HSG Toán 12 THPT cấp tỉnh năm học 2017 – 2018 sở GD và ĐT Phú Thọ gồm 6 trang, thời gian làm bài 180 phút, đề thi gồm 2 phần: + Phần tư luận (8 điểm): Gồm 4 bài toán tự luận + Phần trắc nghiệm (12 điểm): Gồm 40 câu trắc nghiệm
Lời giải và bình luận đề thi VMO 2018
Tài liệu gồm 22 trang hướng dẫn giải và bình luận đề thi VMO 2018 (Đề thi chọn học sinh giỏi quốc gia THPT năm 2018 của Bộ giáo dục và Đào tạo). Kỳ thi VMO 2018 được diễn ra trong 2 ngày 11 và 12/01/2018 với tổng cộng 7 bài toán. Tài liệu được biên soạn bởi các thầy, cô giáo và thành viên trong nhóm Epsilon: Trần Nam Dũng, Võ Quốc Bá Cẩn, Lê Phúc Lữ, Trần Quang Hùng, Nguyễn Lê Phước, Nguyễn Văn Huyện.
Đề thi chọn học sinh giỏi Toán 12 cấp tỉnh THPT năm học 2017 - 2018 sở GD và ĐT Hòa Bình
Đề thi chọn học sinh giỏi Toán 12 cấp tỉnh THPT năm học 2017 – 2018 sở GD và ĐT Hòa Bình gồm 6 bài toán tự luận, thời gian làm bài 180 phút, đề thi có lời giải chi tiết . Trích dẫn đề thi chọn học sinh giỏi Toán 12 : + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = a√2, BC = a và SA = SB = SC = SD = 2a. Gọi K là hình chiếu vuông góc của điểm B trên AC và H là hình chiếu vuông góc của K trên SA. a) Tính thể tích khối chóp S.ABCD theo a. b) Tính diện tích xung quanh của hình nón được tạo thành khi quay tam giác ADC quanh AD theo a. c) Tính cosin góc giữa đường thẳng SB và mặt phẳng (BKH). [ads] + Cho đa giác lồi có 14 đỉnh. Gọi X là tập hợp các tam giác có ba đỉnh là ba đỉnh của đa giác đã cho. Chọn ngẫu nhiên trong X một tam giác. Tính xác suất để tam giác được chọn không có cạnh nào là cạnh của đa giác đã cho. + Trong mặt phẳng với hệ trục tọa độ Oxy, cho điểm K(-2;-5) và đường tròn (C) có phương trình (x – 1)^2 + (y – 1)^2 = 10. Đường tròn (C2) tâm K cắt đường tròn (C) tại hai điểm A, B sao cho dây cung AB = 2√5. Viết phương trình đường thẳng AB.
Đề thi học sinh giỏi Toán 12 cấp tỉnh năm học 2017 - 2018 sở GD và ĐT Ninh Bình
Đề thi học sinh giỏi Toán 12 cấp tỉnh năm học 2017 – 2018 sở GD và ĐT Ninh Bình gồm 8 trang với 56 câu trắc nghiệm khách quan, 05 câu tự luận, kỳ thi diễn ra vào ngày 06 tháng 12 năm 2017, đề thi có đáp án . Trích dẫn đề thi HSG : + Cho hàm số y = log1/3 x. Mệnh đề nào dưới đây là mệnh đề sai? A. Đồ thị hàm số đã cho có một đường tiệm cận đứng B. Hàm số đã cho có đạo hàm y’ = -1/xlog3 ∀x ≠ 0 C. Hàm số đã cho có tập xác định D = R\{0} D. Hàm số đã cho nghịch biến trên mỗi khoảng mà nó xác định [ads] + Bồn chứa nước SƠN HÀ có hình trụ kín cả 2 đáy, trong đó bán kính đường tròn đáy là r và chiều cao của bồn là h. Nhà máy sản xuất bồn tùy theo yêu cầu của khách hàng và cứ tính theo đơn giá 1 triệu đồng 1 m2 vật liệu làm bồn. Một khách hàng đặt 10 triệu đồng để làm một bồn nước SƠN HÀ. Anh hay chị hãy tính giúp vị khách đó kích thước của bồn để bồn đựng được nhiều nước nhất. + Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi K là trung điểm của SC. Mặt phẳng qua AK cắt các cạnh SB, SD lần lượt tại M và N. Gọi V1, V thứ tự là thể tích của khối chóp S.AMKN và khối chóp S.ABCD. Tìm giá trị nhỏ nhất và giá trị lớn nhất của tỷ số V1/V.