Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh vào lớp 10 môn Toán năm 2021 - 2022 sở GDĐT Cần Thơ

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh vào lớp 10 môn Toán năm học 2021 – 2022 sở GD&ĐT Cần Thơ; đề thi được biên soạn theo hình thức trắc nghiệm khách quan kết hợp với tự luận, phần trắc nghiệm gồm 20 câu, chiếm 4,0 điểm, phần tự luận gồm 04 câu, chiếm 6,0 điểm, thời gian làm bài 120 phút; kỳ thi được diễn ra vào ngày 05 tháng 06 năm 2021. Trích dẫn đề tuyển sinh vào lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Cần Thơ : + Tìm tất cả các giá trị của tham số m sao cho phương trình 2 x mx m 1 0 có hai nghiệm phân biệt x1, x2 thỏa mãn 1 2 1 2 1 1 x x x x. + Trong năm học 2020 – 2021, trường Trung học cơ sở A tổ chức cho học sinh đăng ký tham gia câu lạc bộ Toán học và câu lạc bộ Sáng tạo khoa học. Ở học kỳ 1, số lượng học sinh tham gia câu lạc bộ Toán học ít hơn số lượng học sinh tham gia câu lạc bộ Sáng tạo khoa học là 50 học sinh. Sang học kỳ 2, có 5 học sinh chuyển từ câu lạc bộ Sáng tạo khoa học sang câu lạc bộ Toán học nên số lượng học sinh của câu lạc bộ Toán học bằng 3 4 số lượng học sinh của câu lạc bộ Sáng tạo khoa học. Biết rằng trong năm học, tồng số học sinh tham gia cả hai câu lạc bộ không thay đổi và mỗi học sinh chỉ tham gia một câu lạc bộ. Hỏi số lượng học sinh của mỗi câu lạc bộ ở học kỳ 2 là bao nhiêu? + Cho tam giác ABC (AB < AC) có ba góc nhọn và nội tiếp đường tròn (O). Các đường cao AD, BE và CF của tam giác ABC cắt nhau tại điểm H. a) Chứng minh các tứ giác BCEF, EHDC nội tiếp. b) Gọi K là giao điểm của hai đường thẳng EF và BC. Đường thẳng AK cắt đường tròn (O) tại điểm thứ hai là I. Chứng minh tam giác KBF đồng dạng với tam giác KEC và KI.KA = KF.KE. c) Qua điểm B vẽ đường thẳng song song với đường thẳng AC cắt các đường thẳng AK và AH lần lượt tại điểm M và điểm N. Chứng minh HM = HN.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử tuyển sinh lớp 10 năm học 2017 - 2018 môn Toán trường THCS Nga Thiện - Thanh Hóa
Đề thi thử tuyển sinh lớp 10 năm học 2017 – 2018 môn Toán trường THCS Nga Thiện – Thanh Hóa gồm 5 bài toán tự luận, có lời giải chi tiết.
Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Hà Nam
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Hà Nam gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho đường tròn (O). Từ một điểm M nằm ngoài đường tròn (O), kẻ hai tiếp tuyến MA và MB của đường tròn (A, B là các tiếp điểm). Kẻ đường kính BE của đường tròn (O). Gọi F là giao điểm thứ hai của đường thẳng ME và đường tròn (O). Đường thẳng AF cắt MO tại điểm N. Gọi H là giao điểm của MO và AB [ads] 1) Chứng minh tứ giác MAOB nội tiếp đường tròn 2) Chứng minh đường thẳng AE song song với đường thẳng MO 3) Chứng minh: MN2 = NF.NA 4) Chứng minh: MN = NH
Đề thi thử tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán trường THCS Thiệu Vận - Thanh Hóa lần 1
Đề thi thử tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán trường THCS Thiệu Vận – Thanh Hóa lần 1 gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): y = 2(m – 2)x + m – 3 và parabol (P): y = mx^2 (m khác 0) a. Tìm m để đường thẳng d đi qua điểm A (-1;3) b. Tìm m để (d) cắt (P) tại hai điểm phân biệt có hoành độ x1, x2 trái dấu (với (d) là ở đề bài cho) [ads] + Cho đường tròn tâm (0), đường kính AB = 2R. Trên đường thẳng AB lấy điểm H sao cho B nằm giữa A và H (H không trùng với B), qua H dựng đường thẳng d vuông góc với AB. Lấy C cố định thuộc đoạn thẳng OB (C không trùng với O và B). Qua điểm C kẻ đường thẳng a bất kì cắt đường tròn (0) tại hai điểm E và F (a không trùng với AB). Các tia AE và AF cắt đường thẳng d lần lượt tại M, N a) Chứng minh tứ giác BEMH nội tiếp đường tròn b) Chứng minh 2 tam giác AFB và AHN đồng dạng, và đường tròn ngoại tiếp tam giác AMN luôn đi qua một điểm cố định khác A khi đường thẳng a thay đổi c) Cho AB = 4cm; BC = 1cm; HB = 1 cm. Tìm giá trị nhỏ nhất của diện tích tam giác AMN
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Bình Định
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 – 2018 môn Toán sở GD và ĐT Bình Định gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho đường tròn (T) tâm O đường kính AB, trên tiếp tuyến tại A lấy một điểm P khác A, điểm K thuộc đoạn OB (K khác O và B). Đường thẳng PK cắt đường tròn (T) tại C và D (C nằm giữa P và D), H là trung điểm của CD [ads] a) Chứng minh tứ giác AOHP nội tiếp được đường tròn b) Kẻ DI song song PO, điểm I thuộc AB, chứng minh góc PDI = góc BAH c) Chứng minh đẳng thức: PA^2 = PC.PD d) BC cắt OP tại J, chứng minh AJ//DB