Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh vào lớp 10 môn Toán năm 2021 - 2022 sở GDĐT Cần Thơ

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh vào lớp 10 môn Toán năm học 2021 – 2022 sở GD&ĐT Cần Thơ; đề thi được biên soạn theo hình thức trắc nghiệm khách quan kết hợp với tự luận, phần trắc nghiệm gồm 20 câu, chiếm 4,0 điểm, phần tự luận gồm 04 câu, chiếm 6,0 điểm, thời gian làm bài 120 phút; kỳ thi được diễn ra vào ngày 05 tháng 06 năm 2021. Trích dẫn đề tuyển sinh vào lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Cần Thơ : + Tìm tất cả các giá trị của tham số m sao cho phương trình 2 x mx m 1 0 có hai nghiệm phân biệt x1, x2 thỏa mãn 1 2 1 2 1 1 x x x x. + Trong năm học 2020 – 2021, trường Trung học cơ sở A tổ chức cho học sinh đăng ký tham gia câu lạc bộ Toán học và câu lạc bộ Sáng tạo khoa học. Ở học kỳ 1, số lượng học sinh tham gia câu lạc bộ Toán học ít hơn số lượng học sinh tham gia câu lạc bộ Sáng tạo khoa học là 50 học sinh. Sang học kỳ 2, có 5 học sinh chuyển từ câu lạc bộ Sáng tạo khoa học sang câu lạc bộ Toán học nên số lượng học sinh của câu lạc bộ Toán học bằng 3 4 số lượng học sinh của câu lạc bộ Sáng tạo khoa học. Biết rằng trong năm học, tồng số học sinh tham gia cả hai câu lạc bộ không thay đổi và mỗi học sinh chỉ tham gia một câu lạc bộ. Hỏi số lượng học sinh của mỗi câu lạc bộ ở học kỳ 2 là bao nhiêu? + Cho tam giác ABC (AB < AC) có ba góc nhọn và nội tiếp đường tròn (O). Các đường cao AD, BE và CF của tam giác ABC cắt nhau tại điểm H. a) Chứng minh các tứ giác BCEF, EHDC nội tiếp. b) Gọi K là giao điểm của hai đường thẳng EF và BC. Đường thẳng AK cắt đường tròn (O) tại điểm thứ hai là I. Chứng minh tam giác KBF đồng dạng với tam giác KEC và KI.KA = KF.KE. c) Qua điểm B vẽ đường thẳng song song với đường thẳng AC cắt các đường thẳng AK và AH lần lượt tại điểm M và điểm N. Chứng minh HM = HN.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử vào 10 chuyên môn Toán (chuyên) năm 2024 lần 2 trường chuyên ĐHSP Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử tuyển sinh vào lớp 10 THPT chuyên môn Toán (chuyên) năm 2024 lần 2 trường THPT chuyên ĐHSP Hà Nội, thành phố Hà Nội. Trích dẫn Đề thi thử vào 10 chuyên môn Toán (chuyên) năm 2024 lần 2 trường chuyên ĐHSP Hà Nội : + Cho tam giác nhọn, không cân ABC nội tiếp đường tròn (O), có AD là đường phân giác trong (D thuộc BC). E là một điểm di động trên cạnh AB (E khác A). Đường tròn ngoại tiếp tam giác ADE cắt AC tại điểm thứ hai F (khác A), cắt đường thẳng BC tại điểm thứ hai K (khác D). Chứng minh rằng: a) BE.KC = CF.KB. b) BE + CF không đổi khi E thay đổi trên cạnh AB (khác A) của tam giác ABC. + Thầy giáo ghi lên bảng các số 1!, 2!, 3!, …, 23!. Thầy giáo cho phép bạn Dương xóa đi một hoặc nhiều các số đang có trên bảng. Hỏi bạn Dương phải xóa đi ít nhất bao nhiêu số sao cho tích các số còn lại trên bảng là một số chính phương? Tại sao? (Ở đây, n! là tích của n số nguyên dương đầu tiên).
Đề thi thử vào 10 chuyên môn Toán (chung) năm 2024 lần 2 trường chuyên ĐHSP Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử tuyển sinh vào lớp 10 THPT chuyên môn Toán (chung) năm 2024 lần 2 trường THPT chuyên ĐHSP Hà Nội, thành phố Hà Nội.
Đề thi thử Toán vào lớp 10 lần 3 năm 2024 - 2025 trường THCS Thắng Nhì - BR VT
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT lần 3 năm học 2024 – 2025 trường THCS Thắng Nhì, thành phố Vũng Tàu, tỉnh Bà Rịa – Vũng Tàu; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán vào lớp 10 lần 3 năm 2024 – 2025 trường THCS Thắng Nhì – BR VT : + Theo kế hoạch công an tỉnh Bà Rịa – Vũng Tàu điều hai tổ công tác đến làm thẻ Căn cước công dân cho phường Thắng Nhì trên địa bàn thành phố Vũng Tàu. Nếu cả hai tổ cùng làm thì trong 4 ngày hoàn thành công việc. Nếu mỗi tổ làm riêng thì thời gian tổ 1 hoàn thành công việc ít hơn thời gian tổ 2 hoàn thành công việc là 6 ngày. Hỏi nếu làm riêng thì mỗi tổ phải làm trong bao nhiêu ngày để hoàn thành công việc? + Cho đường tròn tâm O. Từ điểm M nằm ngoài (O) kẻ hai tiếp tuyến MC, MD (C; D là các tiếp điểm). Vẽ cát tuyến MAB với đường tròn (A, B thuộc đường tròn và dây AB không đi qua O; A nằm giữa M và B; C thuộc cung nhỏ AB). Gọi I là trung điểm của AB và H là giao điểm của OM và CD. a) Chứng minh tứ giác MIOD nội tiếp được đường tròn. b) Tia DI cắt đường tròn (O) tại G. Chứng minh CGD MID. c) Gọi E là giao điểm của hai đường thẳng CD và OI, S là giao điểm của MI và EH, K là giao điểm của hai đường thẳng OS và ME. Chứng minh MH.MO + EI.EO = ME2. d) Kẻ dây BN song song với CD. Chứng minh ba điểm: A, H, N thẳng hàng.
Đề thi thử Toán vào 10 lần 1 năm 2024 - 2025 trường Lương Ngọc Quyến - Thái Nguyên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT lần 1 năm học 2024 – 2025 trường THPT Lương Ngọc Quyến, tỉnh Thái Nguyên; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán vào 10 lần 1 năm 2024 – 2025 trường Lương Ngọc Quyến – Thái Nguyên : + Một người nông dân trồng hoa trên một mảnh vườn hình chữ nhật có chiều dài hơn chiều rộng 15m. Cuối vụ thu hoạch, bình quân người đó bán được 20.000 đồng tiền hoa trên mỗi mét vuông đất. Tính chiều dài và chiều rộng mảnh vườn đó. Biết tổng số tiền bán hoa cuối vụ từ mảnh vườn, người đó thu được là 252 triệu đồng. + Cho tam giác ABC vuông tại A có AB = 3cm, AC = 4cm. Kẻ đường cao AH. Tính độ dài các đoạn thẳng AH, BH, CH. + Cho đường tròn O1 và O2 tiếp xúc ngoài tại A và một đường thẳng d tiếp xúc với O O 1 2 lần lượt tại B C. a) Tính tổng số đo của hai góc BO O 1 2 và 2 1 CO O. b) Chứng minh rằng tam giác ABC vuông tại A.