Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử tốt nghiệp THPT 2020 môn Toán lần 1 trường Thanh Chương 1 - Nghệ An

Nhằm giúp học sinh khối 12 của nhà trường chuẩn bị cho kỳ thi tốt nghiệp THPT 2020 môn Toán, vừa qua, trường THPT Thanh Chương 1, tỉnh Nghệ An đã tổ chức kỳ thi thử tốt nghiệp THPT năm học 2019 – 2020 môn Toán lần thứ nhất. Đề thi thử tốt nghiệp THPT 2020 môn Toán lần 1 trường Thanh Chương 1 – Nghệ An có mã đề 108, đề có cấu trúc khá giống với đề minh họa THPT 2020 môn Toán lần 2 của Bộ Giáo dục và Đào tạo, đề thi có đáp án mã đề 101, 102, 103, 104, 105, 106, 107, 108. Trích dẫn đề thi thử tốt nghiệp THPT 2020 môn Toán lần 1 trường Thanh Chương 1 – Nghệ An : + Dân số thế giới được ước tính theo công thức S = Ae^ni, trong đó A là dân số của năm lấy làm mốc, S là dân số sau n năm, i là tỉ lệ tăng dân số hàng năm. Dân số Việt Nam năm 2019 là 95,5 triệu người, tỉ lệ tăng dân số hàng năm từ 2009 đến nay là 1,14%. Hỏi dân số Việt Nam năm 2009 gần với số nào nhất trong các số sau? A. 94, 4 triệu người. B. 85,2 triệu người. C. 86,2 triệu người. D. 83,9 triệu người. + Cho hàm số y = x^3 – 3x^2 + m – 1. Tổng tất cả các giá trị nguyên của tham số m để đồ thị hàm số cắt trục hoành tại ba điểm phân biệt bằng? + Gọi S là tập hợp tất cả các số tự nhiên có 5 chữ số mà các chữ số đều khác 0. Lấy ngẫu nhiên một số từ S. Xác suất để lấy được số chỉ có mặt 3 chữ số gần với số nào nhất trong các số sau?

Nguồn: toanmath.com

Đọc Sách

Đề thi định kỳ Toán 12 lần 1 năm 2020 - 2021 trường Việt Yên 1 - Bắc Giang
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi định kỳ Toán 12 lần 1 năm học 2020 – 2021 trường THPT Việt Yên số 1, tỉnh Bắc Giang; đề thi được biên soạn theo hình thức 100% trắc nghiệm với 50 câu hỏi và bài toán, đề gồm có 05 trang, thời gian làm bài 90 phút, đề thi có đáp án mã đề 121, 122, 123, 124. Trích dẫn đề thi định kỳ Toán 12 lần 1 năm 2020 – 2021 trường Việt Yên 1 – Bắc Giang : + Cắt khối lăng trụ ABC.A’B’C’ bởi các mặt phẳng (AB’C’) và (ABC’) ta được những khối đa diện nào? A. Hai khối tứ diện và hai khối chóp tứ giác. B. Ba khối tứ diện. C. Hai khối tứ diện và một khối chóp tứ giác. D. Một khối tứ diện và hai khối chóp tứ giác. + Cho hình lăng trụ ABC.A’B’C’ có đáy là tam giác vuông cân, AB = BC = 2a. Tam giác A’AC cân tại A’ và nằm trong mặt phẳng vuông góc với mặt đáy. Thể tích của khối lăng trụ ABC.A’B’C’ bằng 2a3. Tính khoảng cách giữa hai đường thẳng AB và CC’. + Cho tập hợp A có 7 phần tử. Hỏi tập A có bao nhiêu tập con có nhiều hơn một phần tử?
Đề thi thử Toán THPT Quốc gia 2021 lần 1 trường THPT Quảng Xương 1 - Thanh Hóa
Sáng Chủ Nhật ngày 17 tháng 01 năm 2021, trường THPT Quảng Xương 1, tỉnh Thanh Hóa tổ chức kỳ thi giao lưu kiến thức thi THPT Quốc gia môn Toán năm học 2020 – 2021 lần thứ nhất. Đề thi thử Toán THPT Quốc gia 2021 lần 1 trường THPT Quảng Xương 1 – Thanh Hóa được biên soạn theo hình thức 100% trắc nghiệm, đề gồm 06 trang với 50 câu hỏi và bài toán, thời gian học sinh làm bài thi là 90 phút, kết quả được đăng tải trên web: quangxuong1.edu.vn vào ngày 21/01/2021, lịch giao lưu lần 2 ngày 07/03/2021. Trích dẫn đề thi thử Toán THPT Quốc gia 2021 lần 1 trường THPT Quảng Xương 1 – Thanh Hóa : + Năm 2020, một doanh nghiệp X có tổng doanh thu là 150 tỉ đồng. Dự kiến trong 10 năm tiếp theo, tổng doanh thu mỗi năm sẽ tăng thêm 12% so với năm liền trước. Theo dự kiến đó thì kể từ năm nào, tổng doanh thu của doanh nghiệp X vượt quá 360 tỉ đồng? + Cho khối cầu bán kính bằng 5, cắt khối cầu này bằng một mặt phẳng sao cho thiết diện tạo thành là một hình tròn có đường kính bằng 4. Tính thể tích khối nón có đáy là thiết diện vừa tạo và đỉnh là tâm của khối cầu đã cho. + Từ 12 học sinh gồm 5 học sinh giỏi, 4 học sinh khá, 3 học sinh trung bình, giáo viên muốn thành lập 4 nhóm làm 4 bài tập lớn khác nhau, mỗi nhóm 3 học sinh. Tính xác suất để nhóm nào cũng có học sinh giỏi và học sinh khá.
Đề thi thử TN THPT 2021 môn Toán lần 2 trường Nguyễn Đăng Đạo - Bắc Ninh
Chủ Nhật ngày 17 tháng 01 năm 2021, trường THPT Nguyễn Đăng Đạo, huyện Tiên Du, tỉnh Bắc Ninh tổ chức kỳ thi thử tốt nghiệp Trung học Phổ thông Quốc gia môn Toán năm học 2020 – 2021 lần thứ hai. Đề thi thử TN THPT 2021 môn Toán lần 2 trường Nguyễn Đăng Đạo – Bắc Ninh mã đề 171 gồm 06 trang với 50 câu hỏi và bài toán dạng trắc nghiệm, thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề thi thử TN THPT 2021 môn Toán lần 2 trường Nguyễn Đăng Đạo – Bắc Ninh : + Kể từ ngày 1/1/2021, cứ vào ngày mùng 1 hàng tháng, ông A ra gửi ngân hàng số tiền là x (đồng) với lãi suất 0,5% / tháng. Biết tiền lãi của tháng trước được cộng vào tiền gốc của tháng sau. Tìm giá trị nhỏ nhất của x để đến ngày 1/1/2022 khi ông A rút cả gốc và lãi thì được số tiền lãi là hơn 10 triệu đồng? (kết quả lấy làm tròn đến nghìn đồng). + Một thợ thủ công muốn vẽ trang trí một hình vuông kích thước 4m x 4m bằng cách vẽ một hình vuông mới với các đỉnh là trung điểm các cạnh của hình vuông ban đầu, và tô kín màu lên hai tam giác đối diện (như hình vẽ). Quá trình vẽ và tô theo quy luật đó được lặp lại 5 lần. Tính số tiền nước sơn để người thợ đó hoàn thành trang trí hình vuông như trên? Biết tiền nước sơn 1m2 là 60.000 đồng. + Trong mặt phẳng (P), cho hình chữ nhật ABCD có AB = a, AD = b. Trên các nửa đường thẳng Ax, Cy vuông góc với (P) và ở cùng một phía với mặt phẳng ấy, lần lượt lấy các điểm M, N sao cho (MBD) vuông góc với (NBD). Tìm giá trị nhỏ nhất Vmin của thể tích khối tứ diện MNBD.
Đề thi thử Toán tốt nghiệp THPT 2021 lần 1 trường Lương Thế Vinh - Hà Nội
Ngày … tháng 01 năm 2021, trường THCS – THPT Lương Thế Vinh, thành phố Hà Nội tổ chức kỳ thi thử tốt nghiệp THPT môn Toán năm học 2020 – 2021 lần thứ nhất. Đề thi thử Toán tốt nghiệp THPT 2021 lần 1 trường Lương Thế Vinh – Hà Nội mã đề 101 gồm 07 trang với 50 câu hỏi và bài toán dạng trắc nghiệm, thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề thi thử Toán tốt nghiệp THPT 2021 lần 1 trường Lương Thế Vinh – Hà Nội : + Trong không gian với hệ trục tọa độ Oxyz, cho hai véctơ a(3;-2;m), b(2;m;-1) với m là tham số nhận giá trị thực. Tìm giá trị của m để hai véctơ a và b vuông góc với nhau. + Trong không gian với hệ trục tọa độ Oxyz, cho bốn điểm A(1;1;4), B(5;-1;3), C(3;1;5) và D(2;2;m) (với m là tham số). Xác định m để bốn điểm A, B, C và D tạo thành bốn đỉnh của một tứ diện. + Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(3;0;0), B(-3;0;0) và C(0;5;1). Gọi M là một điểm nằm trên mặt phẳng (Oxy) sao cho MA + MB = 10, giá trị nhỏ nhất của MC là?