Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề Toán 12 ôn thi THPTQG - Lư Sĩ Pháp (Tập 1 Giải tích)

Tài liệu gồm 153 trang tuyển tập lý thuyết, phân dạng toán và bài tập trắc nghiệm có đáp án các chuyên đề Toán 12 phần Giải tích ôn thi THPT Quốc gia, tài liệu được biên soạn bởi thầy Lư Sĩ Pháp. CHUYÊN ĐỀ 1 . ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ §1. SỰ ĐỒNG BIẾN, NGHỊCH BIẾN CỦA HÀM SỐ + Dạng 1. Tìm các khoảng đồng biến, nghịch biến của hàm số đã cho + Dạng 2. Tìm tham số m ∈ R để hàm số luôn luôn đồng biến hay nghịch biến trên tập xác định của nó + Dạng 3. Tìm tham số m ∈ R để hàm số luôn luôn đồng biến hay nghịch biến trên khoảng (α; β) §2. CỰC TRỊ CỦA HÀM SỐ + Dạng 1. Tìm các điểm cực trị của hàm số y = f(x) + Dạng 2. Tìm tham số m để hàm số đạt cực đại hay cực tiểu tại điểm x0 + Dạng 3. Tìm tham số m để hàm số không có hoặc có cực trị và thỏa mãn điều kiện bài toán §3. GIÁ TRỊ LỚN NHẤT, GIÁ TRỊ NHỎ NHẤT CỦA HÀM SỐ + Dạng 1. Tìm GTLN – GTNN của hàm số trên đoạn [a; b]. Xét hàm số y = f(x) + Dạng 2. Tìm GTLN – GTNN của hàm số chứa căn thức + Dạng 3. Tìm GTLN – GTNN của hàm số trên một khoảng (a; b) + Dạng 4. Ứng dụng vào bài toán thực tế §4. ĐƯỜNG TIỆM CẬN + Dạng 1: Tìm các đường tiệm cận thông qua định nghĩa; bảng biến thiên + Dạng 2: Tìm các đường tiệm cận của hàm số nhất biến + Dạng 3: Tìm các đường tiệm đứng của hàm số khác §5. KHẢO SÁT SỰ BIẾN THIÊN VÀ VẼ ĐỒ THỊ HÀM SỐ §6. MỘT SỐ BÀI TOÁN THƯỜNG GẶP VỀ ĐỒ THỊ + Dạng 1. Biện luận số giao điểm của hai đồ thị + Dạng 2. Biện luận số nghiệm của phương trình bằng đồ thị + Dạng 3. Viết phương trình tiếp tuyến + Dạng 4. Sự tiếp xúc của các đường cong [ads] CHUYÊN ĐỀ 2 . HÀM SỐ LŨY THỪA – HÀM SỐ MŨ – HÀM SỐ LÔGARIT. PHƯƠNG TRÌNH – BẤT PHƯƠNG TRÌNH – HỆ PHƯƠNG TRÌNH MŨ – LÔGARIT + Dạng 1. Xét tính đúng sai của một mệnh đề + Dạng 2. Tính (rút gọn) biểu thức mũ và lôgarit + Dạng 3. Biểu diễn một lôgarit qua các yếu tố cho trước + Dạng 4. So sánh các biểu thức chứa mũ và lôgarit + Dạng 5. Tập xác định của hàm số + Dạng 6. Tính đạo hàm + Dạng 7. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số + Dạng 8. Giải phương trình, bất phương trình, hệ phương trình + Dạng 9. Nhận dạng đồ thị, xác định các hệ số. + Dạng 10. Bài toán thực tế CHUYÊN ĐỀ 3 . NGUYÊN HÀM – TÍCH PHÂN VÀ ỨNG DỤNG CHUYÊN ĐỀ 4 . SỐ PHỨC 1. Số phức 2. Các phép toán trên số phức 3. Mối liên hệ giữa z và z‾ 4. Phương trình bậc hai với hệ số thực 5. Cực trị số phức 6. Một số dạng cơ bản tìm giá trị lớn nhất, giá trị nhỏ nhất của |z| + Dạng 1. Cho số phức z thỏa mãn |z – (a + bi)| = R, R > 0. Tìm giá trị nhỏ nhất, lớn nhất của z + Dạng 2. Cho số phức z thỏa mãn |z – z1| = r1, r1 > 0. Tìm giá trị nhỏ nhất, giá trị lớn nhất của P = |z – z2| + Dạng 3. Cho số phức z thỏa mãn |z – z1| + |z – z2| = k, k > 0. Tìm giá trị nhỏ nhất, giá trị lớn nhất của P = |z| + Dạng 4. Cho hai số phức z1, z2 thỏa mãn z1 + z2 = m + ni và |z1 – z2| = p > 0. Tìm giá trị lớn nhất của P = |z1| + |z2| Xem thêm :  Chuyên đề Toán 11 ôn thi THPT Quốc gia – Lư Sĩ Pháp

Nguồn: toanmath.com

Đọc Sách

Tuyển chọn 152 bài toán vận dụng cao trong các đề thi thử Nguyễn Văn Rin
Nội dung Tuyển chọn 152 bài toán vận dụng cao trong các đề thi thử Nguyễn Văn Rin Bản PDF - Nội dung bài viết Tuyển chọn 152 bài toán vận dụng cao trong các đề thi thử Nguyễn Văn Rin Tuyển chọn 152 bài toán vận dụng cao trong các đề thi thử Nguyễn Văn Rin Đây là tài liệu gồm 26 trang tuyển chọn 152 bài toán mức độ vận dụng cao trong các đề thi thử THPT Quốc gia 2017 của các trường và sở GD – ĐT trên cả nước, các bài tập có đáp án. Trong tài liệu này, bạn sẽ được thách thức với các bài toán như: Một cửa hàng bán lẻ phần mềm MathType với giá ban đầu là 10 USD, và sau đó giảm giá để tăng doanh số bán hàng. Bạn sẽ phải tính toán để xác định giá bán để cửa hàng thu được lợi nhuận lớn nhất. Cho ba tia Ox, Oy, Oz vuông góc với nhau, bạn sẽ phải tìm giá trị bé nhất của bán kính mặt cầu ngoại tiếp tứ diện OABC. Bạn sẽ phải tính toán thể tích phần không gian nằm bên trong cái lều đặc biệt với hình dạng hình “chóp lục giác cong đều”. Với sự đa dạng và phong phú của các bài toán, tài liệu này sẽ giúp bạn rèn luyện kỹ năng giải quyết bài toán và chuẩn bị tốt cho kỳ thi sắp tới. Hãy cùng thử sức và nâng cao trình độ toán học của mình với 152 bài toán vận dụng cao trong tài liệu này!
Tuyển tập đề thi và phương pháp giải nhanh Toán trắc nghiệm Nguyễn Bá Tuấn
Nội dung Tuyển tập đề thi và phương pháp giải nhanh Toán trắc nghiệm Nguyễn Bá Tuấn Bản PDF - Nội dung bài viết Tuyển tập đề thi và phương pháp giải nhanh Toán trắc nghiệm Nguyễn Bá Tuấn Tuyển tập đề thi và phương pháp giải nhanh Toán trắc nghiệm Nguyễn Bá Tuấn Sách "Tuyển tập đề thi và phương pháp giải nhanh Toán trắc nghiệm Nguyễn Bá Tuấn" bao gồm 341 trang chia thành 3 phần chính. + Phần 1: Sách giới thiệu một số phương pháp tư duy giải nhanh Toán trắc nghiệm, bao gồm: - Các yếu tố cốt lỗi khi sử dụng máy tính bỏ túi (MTBT) - Phương pháp biến đổi và ước lượng - Phương pháp tư duy đặc biệt hóa – tổng quát hóa - Phương pháp loại trừ 50 – 50 - Phương pháp tư duy truy hồi - Các công thức đặc biệt + Phần 2: Bao gồm các đề thi thử theo cấu trúc đề minh họa THPT 2017 môn Toán, giúp người đọc ôn tập và củng cố kiến thức. + Phần 3: Cung cấp đề thi Toán trắc nghiệm mở rộng, giúp người đọc thử sức và nâng cao khả năng giải bài toán.
Luyện đề trắc nghiệm môn Toán ôn thi THPT Quốc gia 2017 (Megabook) Trần Công Diêu
Nội dung Luyện đề trắc nghiệm môn Toán ôn thi THPT Quốc gia 2017 (Megabook) Trần Công Diêu Bản PDF - Nội dung bài viết Sản phẩm Luyện đề trắc nghiệm môn Toán ôn thi THPT Quốc gia 2017 (Megabook) Trần Công Diêu Sản phẩm Luyện đề trắc nghiệm môn Toán ôn thi THPT Quốc gia 2017 (Megabook) Trần Công Diêu Sách Luyện đề trắc nghiệm môn Toán ôn thi THPT Quốc gia 2017 do thầy Trần Công Diêu và Megabook biên soạn có tổng cộng 482 trang. Sách bao gồm 20 đề then chốt theo lộ trình giúp học sinh đạt điểm cao trong kỳ thi sắp tới. Cấu trúc sách được xây dựng theo chuẩn kiến thức Toán lớp 12, giúp học sinh ôn tập hiệu quả. Mỗi đề đều có lời giải chi tiết, trọng tâm giúp học sinh hiểu rõ kiến thức và tự tin đối phó với các dạng bài thi. Sản phẩm này là sự lựa chọn tốt cho học sinh muốn tự học và tự ôn thi Toán một cách nhanh chóng và hiệu quả.
Tuyển tập 100 bài toán thực tế trong các đề thi Nguyễn Văn Rin
Nội dung Tuyển tập 100 bài toán thực tế trong các đề thi Nguyễn Văn Rin Bản PDF - Nội dung bài viết Tuyển tập 100 bài toán thực tế trong các đề thi của Nguyễn Văn Rin Tuyển tập 100 bài toán thực tế trong các đề thi của Nguyễn Văn Rin Tài liệu này bao gồm 100 bài toán ứng dụng thực tiễn được sưu tầm và lựa chọn kỹ lưỡng từ các đề thi học kỳ và đề thi thử của công ty giáo dục Nguyễn Văn Rin. Mỗi bài toán được thiết kế để giúp học sinh phát triển kỹ năng tư duy logic và khả năng giải quyết vấn đề. Trong tài liệu, một số bài toán tiêu biểu như sau: 1. Minh's parents are saving money to pay for his university tuition fee of 5 million VND. They deposit a fixed amount of money into a bank account every month with a compound interest rate of 0.5% per month. How much money do they need to deposit each month (rounded to the nearest thousand) to have 5 million VND after 9 months when they withdraw the principal and interest? 2. The annual population growth rate of Vietnam is maintained at 1.05%. The population of Vietnam in 2014 was 90,728,900 people. With this growth rate, what will be the population of Vietnam in 2030? 3. If the current rate of oil consumption in country A remains unchanged, the oil reserves will be depleted in 100 years. However, due to increasing demand, the consumption rate increases by 4% each year. How many years will it take for country A's oil reserves to be depleted? Các bài toán trong tài liệu được lựa chọn kỹ càng để cung cấp cho học sinh những bài tập thực tế và hấp dẫn, giúp họ rèn luyện kỹ năng tính toán và tư duy logic một cách hiệu quả.