Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Rút gọn biểu thức đại số và các bài toán liên quan

Bài toán rút gọn biểu thức đại số và các bài toán liên quan là dạng câu hỏi không thể thiếu trong các đề thi tuyển sinh vào lớp 10 môn Toán, đây là bài toán không khó, học sinh có thể làm tốt bài toán này nếu nắm vững các công thức biến đổi. Tài liệu dưới đây sẽ cung cấp cho các em phương pháp giải 12 dạng bài tập rút gọn biểu thức đại số và các bài toán có liên quan. Dạng 1 . Rút gọn biểu thức. Ngoài việc rèn kỹ năng thực hiện các phép tính trong bài toán rút gọn. Học sinh hay quên hoặc thiếu điều kiện xác định của biến x (ĐKXĐ gồm điều kiện để các căn thức bậc hai có nghĩa, các mẫu thức khác 0 và biểu thức chia (nếu có) khác 0). Dạng 2 . Tính giá trị của biểu thức A khi x = m ( với m là số hoặc biểu thức chứa x). Nếu m là biểu thức chứa căn x = m ( bằng số), trước tiên phải rút gọn; nếu m là biểu thức có dạng căn trong căn thường đưa về hằng đẳng thức để rút gọn; nếu m là biểu thức ta phải đi giải phương trình tìm x. Trước khi tính giá trị của biểu thức A, học sinh thường quên xét xem m có thỏa mãn ĐKXĐ hay không rồi mới được thay vào biểu thức đã rút gọn để tính. Dạng 3 . Tìm giá trị của biến x để A = k (với k là hằng số hoặc là biểu thức chứa x). Thực chất đây là việc giải phương trình. Học sinh thường quên khi tìm được giá trị của x không xét xem giá trị x đó có thỏa mãn ĐKXĐ của A hay không. Dạng 4 . Tìm giá trị của biến x để A ≥ k (hoặc A ≤ k, A > k, A < k …) trong đó k là hằng số hoặc là biểu thức chứa x. Thực chất đây là việc giải bất phương trình. Học sinh thường mắc sai lầm khi giải bất phương trình thường dùng tích chéo hoặc sử dụng một số phép biến đổi sai. Dạng 5 . So sánh biểu thức A với một số hoặc một biểu thức. Thực chất đây là việc đi xét hiệu của biểu thức A với một số hoặc một biểu thức rồi so sánh hiệu đó với số 0. [ads] Dạng 6 . Chứng minh biểu thức A ≥ k (hoặc A ≤ k, A > k, A < k) với k là một số. Thực chất đây là việc đưa về chứng minh đẳng thức hoặc bất đẳng thức. Ta xét hiệu A – k rồi xét dấu biểu thức. Dạng 7 . Tìm giá trị của biến x là số nguyên, số tự nhiên để biểu thức A có giá trị nguyên. Cách làm: chia tử thức cho mẫu thức, rồi tìm giá trị của biến x để mẫu thức là ước của phần dư (một số). Học sinh thường quên kết hợp với điều kiên xác định của biểu thức. Dạng 8 . Tìm giá trị của biến x là số thực, số bất kì để biểu thức A có giá trị nguyên. Học sinh thường nhầm lẫn cách làm của dạng này với dạng tìm giá trị của biến x là số nguyên, số tự nhiên để biểu thức A có giá trị nguyên. Cách làm: sử dụng ĐKXĐ để xét xem biểu thức A nằm trong khoảng giá trị nào, rồi tính giá trị của biểu thức A và từ đó tìm giá trị của biến x. Dạng 9 . Tìm giá trị của tham số để phương trình hoặc bất phương trình có nghiệm. Học sinh cần biết cách tìm điều kiện để phương trình hoặc bất phương trình có nghiệm. Dạng 10 . Tìm giá trị của biến x để A = |A| (hoặc A < |A|, A ≥ |A| …). Nếu |A| > A, suy ra A < 0. Nếu |A| = A, suy ra A ≥ 0. Dạng 11 . Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức A. Học sinh cần biết cách tìm cực trị của phân thức ở một số dạng tổng quát. Học sinh cần đưa biểu thức rút gọn A về một trong những dạng sau để tìm cực trị. Học sinh thường mắc sai lầm khi chỉ chứng minh biểu thức A ≥ k (hoặc A ≤ k) chưa chỉ ra dấu bằng nhưng đã kết luận cực trị của biểu thức A. Dạng 12 : Tìm giá trị lớn nhất, giá trị nhỏ nhất của A khi x thuộc N. Học sinh chú ý bài toán thường cho dưới dạng điều kiện xác định x ≥ a, x ≠ b, trong đó a < b. Ta phải tính giá trị với x là các số tự nhiện thuộc [a;b) và trường hợp x là số tự nhiên lớn hơn b.

Nguồn: toanmath.com

Đọc Sách

Tài liệu học tập lớp 9 môn Toán tập 2 Trần Công Dũng
Nội dung Tài liệu học tập lớp 9 môn Toán tập 2 Trần Công Dũng Bản PDF - Nội dung bài viết Tài liệu học tập lớp 9 môn Toán tập 2 Trần Công Dũng Tài liệu học tập lớp 9 môn Toán tập 2 Trần Công Dũng Bộ tài liệu học tập lớp 9 môn Toán tập 2 do thầy giáo Trần Công Dũng biên soạn có tổng cộng 95 trang. Tài liệu này được thiết kế dành cho học sinh lớp 9, bao gồm tóm tắt lý thuyết chi tiết, phương pháp giải toán cụ thể và bài tập luyện tập đa dạng. Mục lục của tài liệu: PHẦN I: Đại số Chương 1: Hệ hai phương trình bậc nhất một ẩn A. Phương trình bậc nhất hai ẩn số B. Hệ hai phương trình bậc nhất hai ẩn ... PHẦN II: Hình học Chương 3: Góc với đường tròn A. Góc ở tâm - Số đo cung B. Liên hệ giữa cung và dây ... Đây là bộ tài liệu được biên soạn theo định hướng đề thi của sở Giáo dục và Đào tạo thành phố Hồ Chí Minh, giúp học sinh lớp 9 nắm vững kiến thức và kỹ năng cần thiết trong môn Toán. Với nhiều bài tập luyện tập và các phương pháp giải toán đa dạng, tài liệu này sẽ giúp học sinh tự tin hơn khi đối mặt với các bài toán phức tạp.
Tài liệu học tập lớp 9 môn Toán tập 1 Trần Công Dũng
Nội dung Tài liệu học tập lớp 9 môn Toán tập 1 Trần Công Dũng Bản PDF - Nội dung bài viết Tổng quan về Tài liệu học tập lớp 9 môn Toán tập 1 Trần Công DũngMục lục chi tiết Tổng quan về Tài liệu học tập lớp 9 môn Toán tập 1 Trần Công Dũng Tài liệu học tập lớp 9 môn Toán tập 1 do thầy giáo Trần Công Dũng biên soạn, gồm tổng cộng 59 trang. Tài liệu này không chỉ tóm tắt lý thuyết mà còn cung cấp phương pháp giải toán và bài tập luyện tập cho học sinh lớp 9. Đặc biệt, tài liệu được xây dựng theo định hướng đề thi của sở Giáo dục và Đào tạo thành phố Hồ Chí Minh. Mục lục chi tiết Chương 1: Căn bậc hai, căn bậc ba A: Căn bậc hai Tóm tắt lý thuyết và phương pháp giải toán B: Căn thức bậc hai và hằng đẳng thức √A2 = |A| Tóm tắt lý thuyết và phương pháp giải toán Bài tập tự luyện và nâng cao Chương 2: Hàm số bậc nhất A: Nhắc lại và bổ sung khái niệm về hàm số Tóm tắt lý thuyết và các dạng toán lớp 9 B: Hàm số bậc nhất Tóm tắt lý thuyết, phương pháp giải toán và bài tập luyện tập Chương 3: Hệ thức lượng trong tam giác vuông A: Một số hệ thức về cạnh và đường cao của tam giác vuông Tóm tắt lý thuyết, phương pháp giải toán và bài tập tự luyện B: Tỉ số lượng giác Tóm tắt lý thuyết, phương pháp giải toán và bài tập tự luyện Chương 4: Đường tròn A: Sự xác định đường tròn Tóm tắt lý thuyết B: Đường kính và dây của đường tròn C: Liên hệ giữa dây và khoảng cách từ tâm đến dây Bài tập rèn luyện Thông qua tài liệu học tập này, học sinh sẽ được hệ thống hóa kiến thức, rèn luyện kỹ năng giải toán một cách hiệu quả, từ đó nâng cao khả năng làm bài trong các bài kiểm tra, thi cử.
Lý thuyết và phân dạng lớp 9 môn Toán Nguyễn Ngọc Dũng
Nội dung Lý thuyết và phân dạng lớp 9 môn Toán Nguyễn Ngọc Dũng Bản PDF - Nội dung bài viết Giáo trình lý thuyết và phân dạng lớp 9 môn Toán Nguyễn Ngọc Dũng Giáo trình lý thuyết và phân dạng lớp 9 môn Toán Nguyễn Ngọc Dũng Giáo trình này bao gồm 88 trang, đã được biên soạn bởi thầy giáo Nguyễn Ngọc Dũng, tổng hợp lý thuyết và phân dạng môn Toán lớp 9. Mục lục: I. Đại số Chương 1. Căn bậc hai. Căn bậc ba Bài số 1. Căn bậc hai Bài số 2. Liên hệ giữa phép nhân, phép chia và phép khai phương Bài số 3. Biến đổi, rút gọn biểu thức chứa căn bậc hai Bài số 4. Căn bậc ba Bài số 5. Ôn tập chương 1 Chương 2. Hàm số. Hàm số bậc nhất Bài số 1. Hàm số, hàm số bậc nhất Bài số 2. Đường thẳng song song – Đường thẳng cắt nhau Bài số 3. Hệ số góc của đường thẳng y = ax + b (a khác 0) Bài số 4. Các bài tập tổng hợp Bài số 5. Các bài toán thực tế ứng dụng hàm số Chương 3. Hệ phương trình bậc nhất hai ẩn Bài số 1. Phương trình và hệ phương trình bậc nhất hai ẩn Bài số 2. Giải hệ phương trình bậc nhất hai ẩn Bài số 3. Giải bài toán bằng cách lập hệ phương trình Chương 4. Hàm số y = ax^2 (a khác 0). Phương trình bậc hai Bài số 1. Hàm số y = ax^2 (a khác 0) Bài số 2. Phương trình bậc hai một ẩn Bài số 3. Hệ thức Vi-ét và ứng dụng Bài số 4. Phương trình quy về phương trình bậc hai Bài số 5. Giải bài toán bằng cách lập phương trình II. Hình học Chương 1. Hệ thức lượng trong tam giác vuông Bài số 1. Hệ thức lượng trong tam giác vuông Bài số 2. Tỉ số lượng giác trong tam giác vuông Bài số 3. Ứng dụng thực tế Chương 2. Đường tròn Bài số 1. Sự xác định đường tròn Bài số 2. Đường kính và dây của đường tròn Bài số 3. Liên hệ giữa dây và khoảng cách từ tâm đến dây Bài số 4. Vị trí tương đối giữa đường thẳng và đường tròn. Dấu hiệu nhận biết tiếp tuyến Chương 3. Góc với đường tròn Bài số 1. Góc ở tâm – Góc nội tiếp – Góc tạo bởi tiếp tuyến và dây cung Bài số 2. Góc có đỉnh bên trong – bên ngoài đường tròn Bài số 3. Tứ giác nội tiếp Bài số 4. Độ dài đường tròn, cung tròn. Diện tích hình tròn, hình quạt Chương 4. Hình trụ – Hình nón – Hình cầu Bài số 1. Diện tích xung quanh và thể tích của hình trụ Bài số 2. Diện tích xung quanh và thể tích của hình nón và hình nón cụt Bài số 3. Diện tích và thể tích của hình cầu