Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lớp 12 môn Toán lần 2 năm 2023 2024 trường THPT chuyên Thái Bình

Nội dung Đề khảo sát lớp 12 môn Toán lần 2 năm 2023 2024 trường THPT chuyên Thái Bình Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng môn Toán lớp 12 lần 2 năm học 2023 – 2024 trường THPT chuyên Thái Bình, tỉnh Thái Bình; đề thi có đáp án trắc nghiệm mã đề 126 – 234 – 315 – 468. Trích dẫn Đề khảo sát Toán lớp 12 lần 2 năm 2023 – 2024 trường THPT chuyên Thái Bình : + Một người muốn làm một cái thùng tôn dạng khối hộp chữ nhật không nắp có thể tích bằng 3 288 dm. Đáy thùng là hình chữ nhật có chiều dài gấp đôi chiều rộng, giá tôn làm thùng là 500000 đồng/2 m. Nếu người đó biết xác định các kích thước của thùng hợp lí thì chi phí cho việc mua tôn thấp nhất. Hỏi người đó trả chi phí thấp nhất để mua tôn làm thùng đó là bao nhiêu? (giả sử các mép tôn hàn không đáng kể). + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 2, SA = 2 và SA vuông góc với mặt phẳng đáy (ABCD). Gọi M, N là hai điểm thay đổi trên hai cạnh AB, AD sao cho mặt phẳng (SMC) vuông góc với mặt phẳng (SNC). Tính tổng 2 2 1 1 T AN AM khi thể tích khối chóp S.AMCN đạt giá trị lớn nhất. + Một tấm đề can hình chữ nhật được cuộn tròn lại theo chiều dài tạo thành một khối trụ có đường kính 50 (cm). Người ta trải ra 250 vòng để cắt chữ và in tranh cổ động, phần còn lại là một khối trụ có đường kính 45 (cm). Hỏi phần đã trải ra dài bao nhiêu mét (làm tròn đến hàng đơn vị)? File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi HSG tỉnh Toán 12 năm 2019 - 2020 sở GDĐT Lâm Đồng
Thứ Sáu ngày 20 tháng 12 năm 2019, sở Giáo dục và Đào tạo tỉnh Lâm Đồng tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh lớp 12 môn Toán năm học 2019 – 2020. Đề thi HSG tỉnh Toán 12 năm 2019 – 2020 sở GD&ĐT Lâm Đồng gồm 06 bài toán chung cho tất cả các thí sinh và 02 bài toán riêng cho thí sinh hệ THPT và hệ GDTX, đề thi gồm có 02 trang, thời gian làm bài 90 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi HSG tỉnh Toán 12 năm 2019 – 2020 sở GD&ĐT Lâm Đồng : + Một chiếc cốc hình trụ có bán kính đáy bằng 5cm và chiều cao 20cm bên trong có một khối lập phương cạnh 6cm như hình minh họa. Khi đổ nước vào cốc, khối lập phương sẽ nổi 1/3 thể tích của nó lên trên mặt nước (mặt trên khối lập phương song song với mặt nước). Tính thể tích lượng nước đổ vào cốc để mặt trên của khối lập phương ngang bằng với miệng cốc khi nó nổi lên (lấy π = 3,14). [ads] + Học sinh A thiết kể bảng điều khiển điện tử mở cửa phòng học của lớp mình. Bảng gồm 15 nút, mỗi nút được ghi một số từ 1 đến 15 và không có hai nút nào được ghi cùng một số. Để mở cửa cần nhấn ba nút khác nhau sao cho tổng các số trên ba nút đó là số chẵn. Học sinh B không biết quy tắc mở cửa trên, đã nhấn ngẫu nhiên ba nút khác nhau trên bảng điều khiển. Tính xác suất để B mở được cửa phòng học đó. + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = a, AD = 2a, SA vuông góc với mặt đáy, SB tạo với mặt đáy một góc 60°, điểm E thuộc cạnh SA và AE = a√3/3. Mặt phẳng (BCE) cắt SD tại F. Tính thể tích khối đa diện V_ABCDEF và khoảng cách giữa hai đường thẳng SD và BE.
Đề thi HSG Toán 12 THPT cấp tỉnh năm 2019 - 2020 sở GDĐT Quảng Bình
Thứ Ba ngày 10 tháng 12 năm 2019, sở Giáo dục và Đào tạo tỉnh Quảng Bình tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 THPT năm học 2019 – 2020. Đề thi HSG Toán 12 THPT cấp tỉnh năm 2019 – 2020 sở GD&ĐT Quảng Bình gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài thi là 90 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi HSG Toán 12 THPT cấp tỉnh năm 2019 – 2020 sở GD&ĐT Quảng Bình : + Cho tam giác đều ABC cạnh 8cm. Chia tam giác này thành 64 tam giác đều cạnh 1cm bởi các đường thẳng song song với các cạnh tam giác ABC (như hình vẽ). Gọi S là tập hợp các đỉnh của các tam giác cạnh 1cm. Chọn ngẫu nhiên 4 đỉnh thuộc S. Tính xác suất sao cho 4 đỉnh được chọn là 4 đỉnh của hình bình hành nằm trong miền trong của tam giác ABC và có cạnh chứa các cạnh của các tam giác cạnh 1 cm ở trên. [ads] + Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA ⊥(ABCD), SA = a. Một mặt phẳng qua CD cắt SA, SB lần lượt tại M, N. Đặt AM = x, với 0 < x < a. a. Tứ giác MNCD là hình gì? Tính diện tích tứ giác MNCD theo a và x. b. Xác định x để thể tích khối chóp S.MNCD bằng 2/9 lần thể tích khối chóp S.ABCD. + Cho hàm số y = x/(1 – x) có đồ thị (C) và điểm A(-1;1). Tìm các giá trị của m để đường thẳng (d): y = mx – m – 1 cắt đồ thị (C) tại hai điểm phân biệt M, N sao cho AM^2 + AN^2 đạt giá trị nhỏ nhất.
Đề thi học sinh giỏi tỉnh Toán 12 THPT năm 2019 - 2020 sở GDĐT Gia Lai
Ngày 13 tháng 12 năm 2019, sở Giáo dục và Đào tạo tỉnh Gia Lai tổ chức kỳ thi tuyển chọn học sinh giỏi (HSG) cấp tỉnh môn Toán lớp 12 THPT năm học 2019 – 2020. Đề thi học sinh giỏi tỉnh Toán 12 THPT năm 2019 – 2020 sở GD&ĐT Gia Lai được dành cho học sinh bảng B gồm có 01 trang với 08 bài toán dạng tự luận, thời gian làm bài 180 phút. Trích dẫn đề thi học sinh giỏi tỉnh Toán 12 THPT năm 2019 – 2020 sở GD&ĐT Gia Lai : + Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD. Gọi H là hình chiếu vuông góc của B lên AC, M và N lần lượt là trung điểm của đoạn AH và BH. Trên cạnh CD lấy điểm N sao cho tứ giác MNCK là hình bình hành. Biết M(9/5;2/5), K(9;2), điểm B thuộc d1: 2x – y + 2 = 0, điểm C thuộc d2: x – y – 5 = 0 và hoành độ đỉnh C lớn hơn 4. Tìm tọa độ các định của hình chữ nhật ABCD. [ads] + Cho tứ diện ABCD có thể tích V. Gọi I là điểm thuộc miền trong của tứ diện ABCD, các đường thẳng AI, BI, CI, DI lần lượt cắt các mặt phẳng (BCD), (ACD), (ABD), (ABC) tại các điểm M, N, P, Q thỏa mãn AI/MI = BI/NI = CI/PI = DI/QI. Biết V_IBCD = a/b.V với a, b thuộc N* và a/b tối giản. Tính S = a + b. + Cho tam giác ABC có sinA + sinC = 2sinB và tanA/2 + tanC/2 = 2√3/3. Chứng minh rằng tam giác ABC đều.
Đề thi học sinh giỏi tỉnh Toán 12 năm 2019 - 2020 sở GDĐT Lạng Sơn
Thứ Năm ngày 05 tháng 12 năm 2019, sở Giáo dục và Đào tạo tỉnh Lạng Sơn tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán 12 THPT năm học 2019 – 2020. Đề thi học sinh giỏi tỉnh Toán 12 năm 2019 – 2020 sở GD&ĐT Lạng Sơn được biên soạn theo dạng tự luận hoàn toàn với 05 bài toán, đề thi có 01 trang, học sinh làm bài thi trong 180 phút. Trích dẫn đề thi học sinh giỏi tỉnh Toán 12 năm 2019 – 2020 sở GD&ĐT Lạng Sơn : + Có 3 quyển sách Vật lí khác nhau, 4 quyển sách Hóa học khác nhau và 7 quyển sách Toán khác nhau được xếp lên một kệ sách hàng ngang. Tính xác suất để hai cuốn sách cùng môn không xếp cạnh nhau. [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B. Biết rằng AB = SD = 3a, AD = SB = 4a, đường chéo AC vuông góc với mặt phẳng (SBD). Gọi H là hình chiếu vuông góc của S lên (ABCD) và K là giao điểm của AC và BD. a) Tính theo a thể tích khối chóp S.ABCD. b) Tính khoảng cách giữa hai đường thẳng BD và SA. c) Gọi P là hình chiếu vuông góc của K lên AB và Q là hình chiếu vuông góc của H lên SD. Lấy điểm G sao cho CG = 25/16.BA. Chứng minh rằng PQ // (SAG). + Trên sa mạc có một khu đất hình chữ nhật ABCD có chiều dài AD = 80 km, chiều rộng AB = 10 km. Vận tốc trung bình của xe máy trên khu đất này là 20 km/h, riêng đi trên cạnh BC thi vận tốc xe máy là 40 km/h. Một người đi xe máy xuất phát từ A để đi đến D. Xây dựng phương án di chuyển trên khu đất đi từ A đến D để hết ít thời gian nhất, tính thời gian đó.