Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

123 bài toán hàm số bậc nhất và đường thẳng Lương Tuấn Đức

Nội dung 123 bài toán hàm số bậc nhất và đường thẳng Lương Tuấn Đức Bản PDF - Nội dung bài viết Sản phẩm 123 bài toán hàm số bậc nhất và đường thẳng Lương Tuấn Đức Sản phẩm 123 bài toán hàm số bậc nhất và đường thẳng Lương Tuấn Đức Trong lĩnh vực Toán học sơ cấp nói chung và Đại số phổ thông nói riêng, hàm số và đồ thị là những dạng toán cơ bản nhưng rất thú vị. Chúng có phạm vi rộng lớn, liên kết chặt chẽ với nhiều phần khác của toán học sơ cấp và hiện đại. Ở Việt Nam, kiến thức về hàm số và đồ thị đóng vai trò quan trọng trong giáo dục, được giảng dạy trong chương trình sách giáo khoa từ lớp 7, tiếp tục qua các lớp 9, 10, 11, 12 cùng với các kiến thức liên quan. Các kỹ năng về hàm số, đồ thị được rèn luyện đều đặn, bài bản và có hệ thống để hữu ích không chỉ trong môn Toán mà còn phục vụ cho các môn khoa học tự nhiên khác như Hóa học, Vật lý, Địa lý, Sinh học. Trong chương trình Đại số lớp 9 THCS, hàm số và đồ thị đóng vai trò quan trọng trong các đề thi kiểm tra, đề thi tuyển sinh lớp 10 THPT và các trường chuyên. Các bài toán về hàm số và đồ thị tạo cơ sở cho kiến thức chính trong các lớp 10, 12, bao gồm cả hàm số bậc cao và bài toán hình học giải tích. Trong tác phẩm về hàm số và đồ thị, tác giả tập trung vào các bài toán khảo sát biến thiên, vẽ đồ thị của hàm số bậc nhất (đường thẳng), vị trí tương đối giữa các đường thẳng, cũng như vị trí tương đối giữa đường thẳng và đường cong. Ngoài ra, có những bài toán kết nối với yếu tố lượng giác và hình học giải tích. Đồng thời, tác giả cố gắng mở rộng, nâng cao từng bài toán theo nội dung chính về hàm số bậc THPT. Điều này giúp phát triển tư duy hàm số, tư duy hình học giải tích cho học sinh THCS và tạo cơ sở cho các kỳ thi đầy cam go như kỳ thi tuyển sinh đại học – cao đẳng, kỳ thi THPT Quốc gia. Tóm lại, việc nghiên cứu đường thẳng và hàm số không chỉ giúp học sinh hiểu sâu hơn về toán học mà còn giúp họ áp dụng kiến thức vào các môn khoa học khác một cách sáng tạo và linh hoạt.

Nguồn: sytu.vn

Đọc Sách

Bí quyết giải toán số học THCS theo chủ đề
Nội dung Bí quyết giải toán số học THCS theo chủ đề Bản PDF - Nội dung bài viết Bí quyết giải toán số học THCS Bí quyết giải toán số học THCS Tài liệu Bí quyết giải toán số học THCS được biên soạn bởi tác giả: Huỳnh Kim Linh và Nguyễn Quốc Bảo, gồm 525 trang. Tài liệu này trình bày những bí quyết giải toán số học THCS theo chủ đề, chú trọng vào một dạng toán thường gặp trong các đề thi chọn học sinh giỏi Toán từ lớp 6 đến lớp 9. Tài liệu này sẽ giúp bạn hiểu rõ hơn về cách giải các dạng toán số học THCS, từ đơn giản đến phức tạp, giúp bạn tự tin hơn khi tham gia các kỳ thi Toán. Bên cạnh đó, việc biên soạn bởi các tác giả có kinh nghiệm trong giảng dạy môn Toán sẽ giúp bạn nắm vững kiến thức và kỹ năng cần thiết để thành công trong việc giải các bài toán số học THCS.
Bí quyết chứng minh bất đẳng thức Nguyễn Quốc Bảo
Nội dung Bí quyết chứng minh bất đẳng thức Nguyễn Quốc Bảo Bản PDF - Nội dung bài viết Bí quyết chứng minh bất đẳng thức Nguyễn Quốc Bảo Bí quyết chứng minh bất đẳng thức Nguyễn Quốc Bảo Được biên soạn bởi tác giả Nguyễn Quốc Bảo, tài liệu này gồm 327 trang, giúp hướng dẫn các phương pháp chứng minh bất đẳng thức. Bất đẳng thức là dạng toán khó thường xuất hiện trong các đề thi chọn học sinh giỏi Toán lớp 8/ Toán lớp 9, đề tuyển sinh lớp 10 môn Toán. Phần I của tài liệu bao gồm các phương pháp chứng minh bất đẳng thức như sau: Chủ đề 1: Phương pháp dùng định nghĩa trong chứng minh bất đẳng thức. Chủ đề 2: Phương pháp biến đổi tương đương trong chứng minh bất đẳng thức. Chủ đề 3: Phương pháp phản chứng trong chứng minh bất đẳng thức. Chủ đề 4: Phương pháp tam thức bậc hai trong chứng minh bất đẳng thức. Và các chủ đề khác như sử dụng tính chất tỷ số, làm trội, làm giảm, quy nạp toán học, dãy số, AM-GM (Cauchy), Bunyakovsky, có biến trên một đoạn, kĩ thuật đồng bậc hóa, chuẩn hóa, sử dụng đẳng thức, nguyên lý Dirichlet, sắp xếp biến, hàm số bậc nhất, dồn biến, hình học, đổi biến, cực trị, hệ số bất định. Phần II của tài liệu tập trung vào tuyển chọn các bài toán bất đẳng thức hay thường xuất hiện trong các kì thi chọn học sinh giỏi Toán. Bí quyết chứng minh bất đẳng thức của Nguyễn Quốc Bảo là nguồn tư liệu hữu ích giúp học sinh nắm vững và áp dụng thành thục các phương pháp chứng minh bất đẳng thức trong quá trình học tập của mình.
Chuyên đề chứng minh đẳng thức và tính giá trị biểu thức Nguyễn Quốc Bảo
Nội dung Chuyên đề chứng minh đẳng thức và tính giá trị biểu thức Nguyễn Quốc Bảo Bản PDF - Nội dung bài viết Chuyên đề chứng minh đẳng thức và tính giá trị biểu thức - Nguyễn Quốc BảoChủ đề I. Chứng minh đẳng thứcChủ đề II. Tính giá trị biểu thức một biếnChủ đề III. Tính giá trị biểu thức nhiều biến có điều kiện Chuyên đề chứng minh đẳng thức và tính giá trị biểu thức - Nguyễn Quốc Bảo Tài liệu này được biên soạn bởi thầy giáo Nguyễn Quốc Bảo, với mục đích hướng dẫn học sinh cách giải các dạng toán chuyên đề chứng minh đẳng thức và tính giá trị biểu thức. Tài liệu gồm 94 trang, phù hợp cho học sinh lớp 8, lớp 9 và cả những ai muốn ôn thi vào lớp 10 môn Toán. Mục lục của tài liệu bao gồm các chủ đề sau: Chủ đề I. Chứng minh đẳng thức Dạng 1: Sử dụng phép biến đổi thương đương Dạng 2: Sử dụng hằng đẳng thức quen biết Dạng 3: Sử dụng phương pháp đổi biến Dạng 4: Sử dụng bất đẳng thức Dạng 5: Sử dụng lượng liên hợp ... (và các dạng khác) Chủ đề II. Tính giá trị biểu thức một biến Dạng 1: Tính giá trị biểu thức chứa đa thức Dạng 2: Tính giá trị biểu thức chứa căn thức Dạng 3: Tính giá trị biểu thức có biến là nghiệm của phương trình ... (và các dạng khác) Chủ đề III. Tính giá trị biểu thức nhiều biến có điều kiện Dạng 1: Sử dụng phương pháp phân tích Dạng 2: Sử dụng phương pháp hệ số bất định Dạng 3: Sử dụng phương pháp hình học ... (và các dạng khác) Mỗi chủ đề trong tài liệu đều được chia thành ba phần: Kiến thức cần nhớ: Tóm tắt những kiến thức cơ bản và bổ sung để giải các bài tập thuộc các dạng toán Một số ví dụ: Cung cấp ví dụ minh họa để học sinh hiểu rõ về kỹ năng và phương pháp giải Bài tập vận dụng: Hệ thống bài tập phân loại theo độ khó, bao gồm cả các bài tập từ đề thi học sinh giỏi và đề thi vào lớp 10 chuyên Toán Tài liệu này sẽ giúp học sinh nắm vững kiến thức, rèn luyện kỹ năng giải toán, và chuẩn bị tốt cho kỳ thi sắp tới. Cùng với sự hướng dẫn cụ thể và ví dụ minh họa, việc ôn tập sẽ trở nên dễ dàng và hiệu quả hơn.
Sử dụng nguyên lí Dirichle chứng minh bất đẳng thức Nguyễn Tài Chung
Nội dung Sử dụng nguyên lí Dirichle chứng minh bất đẳng thức Nguyễn Tài Chung Bản PDF - Nội dung bài viết Sử dụng nguyên lí Dirichle chứng minh bất đẳng thức Nguyễn Tài Chung Sử dụng nguyên lí Dirichle chứng minh bất đẳng thức Nguyễn Tài Chung Tài liệu mang tựa đề "Sử dụng nguyên lí Dirichle chứng minh bất đẳng thức" được biên soạn bởi thầy giáo Nguyễn Tài Chung. Tài liệu này hướng dẫn cách sử dụng nguyên lí Dirichle để chứng minh bất đẳng thức, đồng thời phù hợp cho việc bồi dưỡng học sinh giỏi Toán cấp THCS và ôn thi tuyển sinh vào lớp 10 trường chuyên. Khái quát nội dung tài liệu: A. LÝ THUYẾT VÀ VÍ DỤ GIẢI TOÁN Nội dung bắt đầu bằng việc đưa ra một ví dụ hay về Nguyên lý Dirichle: Nếu nhốt 3 con chim Bồ Câu vào trong 2 cái chuồng thì bao giờ cũng có một chuồng chứa ít nhất 2 con chim Bồ Câu. Nguyên lý Dirichle đơn giản nhưng lại có tính hiển nhiên và logic. Tiếp theo, tài liệu mô tả cách áp dụng nguyên lí Dirichle vào việc chứng minh bất đẳng thức thông qua các ví dụ cụ thể. Ví dụ về việc chọn "điểm rơi" để giả sử để chứng minh bất đẳng thức, và cách xử lý khi đã chọn được điểm đó. B. BÀI TẬP Phần này tập trung vào việc thực hành các bài tập liên quan đến sử dụng nguyên lí Dirichle chứng minh bất đẳng thức. Học sinh sẽ được yêu cầu tự giải các bài tập, từ đó củng cố kiến thức và kỹ năng của mình trong việc áp dụng nguyên lí này. Đây là một tài liệu hữu ích và có thể giúp học sinh hiểu rõ hơn về nguyên lí Dirichle và cách áp dụng nó vào việc chứng minh bất đẳng thức. Việc thực hành các bài tập cũng giúp học sinh rèn luyện kỹ năng giải quyết vấn đề và tư duy logic trong Toán.