Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát đầu năm lớp 9 môn Toán năm 2019 2020 trường Thanh Xuân Hà Nội

Nội dung Đề khảo sát đầu năm lớp 9 môn Toán năm 2019 2020 trường Thanh Xuân Hà Nội Bản PDF - Nội dung bài viết Đề khảo sát đầu năm lớp 9 môn Toán năm 2019-2020 trường Thanh Xuân Hà Nội Đề khảo sát đầu năm lớp 9 môn Toán năm 2019-2020 trường Thanh Xuân Hà Nội Để đánh giá chất lượng và theo dõi tiến độ học tập của học sinh đầu năm học 2019-2020, trường THCS Thanh Xuân, Hà Nội đã tổ chức kỳ kiểm tra khảo sát đầu năm môn Toán lớp 9. Đề khảo sát này bao gồm các bài toán thuộc chương trình Toán lớp 8, với tổng cộng 5 bài toán dạng tự luận. Trong đề khảo sát đầu năm Toán lớp 9 năm 2019-2020 trường Thanh Xuân, một trong các câu hỏi là về hình thang ABCD có góc A và góc D bằng 90 độ, cạnh AB nhỏ hơn cạnh DC. Hai đường chéo AC và BD vuông góc với nhau tại điểm O. Học sinh được yêu cầu tính tỉ số lượng giác của các góc nhọn và cạnh BD của tam giác ADB, tính độ dài các đoạn thẳng AO, DO và AC, và tính diện tích tam giác DOH. Bài toán cũng yêu cầu chứng minh một phương trình liên quan đến đoạn thẳng BH. Câu hỏi khác trong đề khảo sát là về giá trị nhỏ nhất của biểu thức S với x nằm trong khoảng 2016 đến 2017. Học sinh phải tính toán và suy luận để tìm ra giá trị nhỏ nhất của biểu thức này. Đề khảo sát đầu năm môn Toán lớp 9 năm 2019-2020 trường Thanh Xuân Hà Nội không chỉ giúp học sinh ôn tập kiến thức mà còn phát triển kỹ năng suy luận và giải quyết vấn đề.

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát Toán 9 năm học 2018 - 2019 trường THCS Cổ Loa - Hà Nội
THCS. giới thiệu đến các em học sinh lớp 9 đề kiểm tra khảo sát Toán 9 năm học 2018 – 2019 trường THCS Cổ Loa – Hà Nội, kỳ thi được diễn ra vào thứ Bảy ngày 13 tháng 04 năm 2019 nhằm đánh giá chất lượng học tập môn Toán của học sinh khối lớp 9 trong giai đoạn cuối học kỳ 2 năm học 2018 – 2019, đây cũng là dịp để các em tự kiểm chứng năng lực bản thân trước khi bước vào kỳ thi tuyển sinh vào lớp 10 THPT năm học 2019 – 2020. Đề khảo sát Toán 9 năm học 2018 – 2019 trường THCS Cổ Loa – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, học sinh làm bài kiểm tra khảo sát Toán 9 trong thời gian 120 phút. Trích dẫn đề khảo sát Toán 9 năm học 2018 – 2019 trường THCS Cổ Loa – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Hai người cùng làm chung một công việc thì sau 6 giờ xong. Nếu làm riêng xong công việc đó thì người thứ nhất làm nhanh hơn người thứ hai là 5 giờ. Tính thời gian mỗi người làm riêng xong công việc đó? [ads] + Trong mặt phẳng xOy cho Parabol (P): y = x^2 và đường thẳng (d): y = 2(m – 3)x + 4. a. Chứng minh rằng đường thẳng (d) luôn cắt (P) tại hai điểm phân biệt A và B với mọi giá trị của m. b. Gọi I là giao điểm của (d) và trục Oy. Tìm m để A và B đối xứng nhau qua I. + Cho đường tròn (O;R) đường kính AB và điểm C thuộc (O) sao cho AC < BC. Tiếp tuyến tại C cắt các tiếp tuyến tại A và B lần lượt tại E và F. 1. Chứng minh tứ giác AECO nội tiếp được. 2. Gọi H là giao điểm của EO và AC. Chứng minh: OH.OE = R^2. 3. BC cắt AB tại D, OD cắt AC tại I, tia DH cắt AB tại K. Gọi P là điểm đối xứng của H qua E. Chứng minh tứ giác AHDP là hình bình hành và IK // AD. 4. IK cắt EO tại M. Chứng minh ba điểm A, M, F thẳng hàng.
Đề kiểm tra kỳ 2 Toán 9 năm 2018 2019 trường chuyên Hà Nội Amsterdam
THCS. giới thiệu đến bạn đọc đề kiểm tra kỳ 2 Toán 9 năm 2018 – 2019 trường chuyên Hà Nội – Amsterdam, đề thi gồm 05 bài toán tự luận, thời gian làm bài 120 phút, kỳ thi được diễn ra vào ngày 18 tháng 03 năm 2019.
Đề kiểm tra khảo sát Toán 9 năm 2018 - 2019 phòng GDĐT Thanh Xuân - Hà Nội
Đề kiểm tra khảo sát Toán 9 năm 2018 – 2019 phòng GD&ĐT Thanh Xuân – Hà Nội gồm 01 trang với 05 bài toán tự luận, thời gian làm bài 120 phút, kỳ thi được diễn ra vào thứ Sáu ngày 15 tháng 03 năm 2019. Trích dẫn đề kiểm tra khảo sát Toán 9 năm 2018 – 2019 phòng GD&ĐT Thanh Xuân – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Một đội công nhân theo kế hoạch cần phải sản xuất 900 sản phẩm trong một số ngày quy định. Do mỗi ngày đội công nhân đó sản xuất vượt mức 3 sản phẩm nên đội công nhân đã hoàn thành vượt mức kế hoạch 90 sản phẩm và sớm hơn thời gian quy định 3 ngày. Hỏi theo kế hoạch, mỗi ngày đội công nhân phải sản xuất bao nhiêu sản phẩm? [ads] + Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): y = 2(m – 1)x + 5 – 2m (m là tham số) và parabol (P): y = x^2. a) Chứng minh rằng với mọi giá trị của m đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt. b) Tìm giá trị của m để (d) cắt (P) tại hai điểm phân biệt có tổng tung độ bằng 30. + Cho đường tròn (O; R) và một điểm A nằm ngoài đường tròn sao cho OA = 2R. Từ A kẻ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm). M là điểm bất kỳ trên cung nhỏ BC, tiếp tuyển tại M của đường tròn cắt các đường thẳng AB, AC lần lượt tại E và F. a) Chứng minh tứ giác ABOC là tứ giác nội tiếp. b) Chứng minh tam giác ABC là tam giác đều. c) Chứng minh khi M di động trên cung nhỏ BC thì chu vi tam giác AEF không đổi. Tính chu vi tam giác AEF theo R. d) Tìm vị trí của M trên cung nhỏ BC để đoạn EF có độ dài nhỏ nhất.
Đề khảo sát Toán 9 lần 2 năm 2018 - 2019 trường THCS Đại Áng - Hà Nội
Chủ Nhật ngày 03 tháng 03 năm 2019, trường Trung học Cơ sở Đại Áng, Thanh Trì – Hà Nội đã tiến hành tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 9 lần 2 năm học 2018 – 2019, đề thi gồm 05 bài toán tự luận, học sinh làm bài thi Toán trong 120 phút, kỳ thi nhằm kiểm tra chất lượng môn Toán đối với học sinh lớp 9 giai đoạn giữa học kỳ 2 năm học 2018 – 2019, đồng thời giúp học sinh rèn luyện chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2019 – 2020. Trích dẫn đề khảo sát Toán 9 lần 2 năm 2018 – 2019 trường THCS Đại Áng – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Một xe ô tô dự định đi từ tỉnh A đến tỉnh B với vận tốc 40 km/h. Lúc đầu ô tô đi với vận tốc đó, khi còn 60 km nữa thì được nửa quãng đường AB người lái xe quyết định tăng vận tốc thêm 10 km/h trên quãng đường còn lại. Do đó đến B sớm hơn 1 giờ so với dự định. Tính quãng đường AB? [ads] + Cho parabol (P): y=x^2 và đường thẳng (d): y = mx + 3 (m là tham số). a) Chứng minh rằng (d) luôn cắt (P) tại 2 điểm phân biệt. b) Biết A(2; 4) là một trong 2 giao điểm của (d) và (P). Tìm m? + Cho nửa đường tròn tâm (O), đường kính AB. Điểm H cố định thuộc đoạn thẳng AO (H khác A và O). Đường thẳng đi qua điểm H và vuông góc với AD cắt nửa đường tròn (O) tại C. Trên cung BC lấy D bất kì (D khác B và C). Tiếp tuyến tại D của nửa đường tròn cắt HC tại E. Gọi I là giao điểm của AD và HC. a) Chứng minh tứ giác HBDI nội tiếp đường tròn. b) Chứng minh tam giác DEI cân. c) Gọi F là tâm đường tròn ngoại tiếp tam giác ICD. Chứng minh góc ABF có số đo không đổi khi D thay đổi trên cung BC (D khác B và C).