Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi huyện lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Nam Đàn Nghệ An

Nội dung Đề học sinh giỏi huyện lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Nam Đàn Nghệ An Bản PDF - Nội dung bài viết Đề thi học sinh giỏi môn Toán lớp 9 năm 2022 - 2023 Huyện Nam Đàn, Nghệ An Đề thi học sinh giỏi môn Toán lớp 9 năm 2022 - 2023 Huyện Nam Đàn, Nghệ An Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán lớp 9 năm học 2022 - 2023 do Phòng Giáo dục và Đào tạo huyện Nam Đàn, tỉnh Nghệ An tổ chức. Đề thi bao gồm các câu hỏi sau: Câu 1: Cho a, b, c là các số không âm thỏa mãn: a + b + c = 1. Hãy chứng minh điều kiện đó. Câu 2: Trong tam giác nhọn ABC, có hai đường trung tuyến BM và CN vuông góc với nhau tại G. a) Tính tỉ số diện tích của tam giác AMN và tam giác ABC. b) Chứng minh rằng AB2 + AC2 = 5BC2. c) Chứng minh rằng 3(cot B + cot C) ≥ 2. Câu 3: Sắp xếp 10 số nguyên dương 1, 2, 3, ..., 10 thành một hàng tùy ý. Cộng mỗi số với số thứ tự của nó trong hàng, ta được 10 tổng. Chứng minh rằng trong 10 tổng đó có ít nhất 2 tổng có chữ số tận cùng giống nhau. Đề thi giúp học sinh rèn luyện và củng cố kiến thức Toán, khám phá và phát triển năng khiếu Toán học của mình. Chúc các em thi tốt!

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn HSG Toán 9 vòng 1 năm 2019 - 2020 phòng GDĐT Thường Tín - Hà Nội
Ngày … tháng 10 năm 2019, phòng Giáo dục và Đào tạo UBND huyện Thường Tín, thành phố Hà Nội tổ chức kỳ thi chọn học sinh giỏi lớp 9 vòng 1 môn Toán năm học 2019 – 2020. Đề thi chọn HSG Toán 9 vòng 1 năm học 2019 – 2020 phòng GD&ĐT Thường Tín – Hà Nội gồm 01 trang với 05 bài toán tự luận, thời gian làm bài 120 phút. Trích dẫn đề thi chọn HSG Toán 9 vòng 1 năm 2019 – 2020 phòng GD&ĐT Thường Tín – Hà Nội : + Cho hai đường tròn (O;R) và đường tròn (O’;R/2) tiếp xúc ngoài nhau tại A. Trên đường tròn (O) lấy điểm B sao cho AB = R và điểm M trên cung lớn AB. Tia MA cắt đường tròn (O’) tại điểm thứ hai là N. Qua N kẻ đường thẳng song song với AB cắt đường thẳng MB ở Q và cắt đường tròn (O’) ở P. a. Chứng minh: Tam giác OAM đồng dạng với tam giác OAN. b. Tính: NQ theo R. c. Xác định vị trí của M để diện tích tứ giác ABQN đạt giá trị lớn nhất. Tính giá trị lớn nhất theo R. + Cho tam giác ABC và một điểm O nằm trong tam giác đó. Các tia AO, BO, CO cắt các cạnh BC, CA, AB theo thứ tự tại M, N, P. Chứng minh rằng: OA/AM + OB/BN + OC/CP = 2. + Cho hai số dương x, y thỏa mãn điều kiện x^3 + y^3 = x – y. Chứng minh rằng: x + y < 1.
Đề thi học sinh giỏi Toán 9 năm 2019 - 2020 phòng GDĐT Đống Đa - Hà Nội
Ngày 19 tháng 10 năm 2019, phòng Giáo dục và Đào tạo quận Đống Đa, thành phố Hà Nội tổ chức kỳ thi chọn học sinh giỏi quận lớp 9 môn Toán năm học 2019 – 2020. Đề thi học sinh giỏi Toán 9 năm học 2019 – 2020 phòng GD&ĐT Đống Đa – Hà Nội gồm 05 bài toán, thời gian làm bài 120 phút, đề thi có lời giải chi tiết và biểu điểm. Trích dẫn đề thi học sinh giỏi Toán 9 năm 2019 – 2020 phòng GD&ĐT Đống Đa – Hà Nội : + Cho a, b, c là các số thực dương thỏa mãn a > c và b > c. Chứng minh rằng: √c(a – c) + √c(b – c) ≤ √ab. [ads] + Cho hình vuông ABCD. Lấy điểm E thuộc đoạn thẳng BC nhưng không trùng với các điểm B và C. Lấy điểm G sao cho AG vuông góc với AE và điểm H sao cho AH vuông góc với EG, trong đó các điểm G, H thuộc đường thẳng CD. Hai đoạn thẳng EG và AH cắt nhau tại K. 1. Chứng minh rằng tam giác AEG vuông cân. 2. Chứng minh rằng CG.HG = AE^2. 3. Tính số đo của góc CBK. + Cho 1011 số nguyên dương khác nhau không vượt quá 2019. Chứng minh trong các số đã cho có ít nhất hai số mà một số chia hết cho số còn lại.
Đề thi chọn HSG huyện Toán 9 năm 2019 - 2020 phòng GDĐT Quan Sơn - Thanh Hóa
Ngày 09 tháng 10 năm 2019, phòng Giáo dục và Đào tạo huyện Quan Sơn, tỉnh Thanh Hóa tổ chức kỳ thi chọn học sinh giỏi cấp huyện môn Toán 9 năm 2019 – 2020. Đề thi chọn HSG huyện Toán 9 năm 2019 – 2020 phòng GD&ĐT Quan Sơn – Thanh Hóa gồm có 05 bài toán dạng tự luận, thời gian làm bài 150 phút, đề thi gồm có 01 trang. [ads] Trích dẫn đề thi chọn HSG huyện Toán 9 năm 2019 – 2020 phòng GD&ĐT Quan Sơn – Thanh Hóa : + Cho tam giác ABC nhọn, các đường cao AD, BE, CF cắt nhau tại H. Chứng minh rằng: 1. AF.AB = AH.AD = AE.AC. 2. H là tâm đường tròn nội tiếp tam giác DEF. 3. Gọi M, N, P, I, K, Q lần lượt là trung điểm các đoạn thẳng BC, AC, AB, EF, ED, DF. Chứng minh rằng các đường thẳng MI, NQ, PK đồng quy. 4. Gọi độ dài các đoạn thẳng AB, BC, CA lần lượt là a, b, c. Độ dài các đoạn thẳng AD, BE, CF là a’, b’, c’. Tìm giá trị nhỏ nhất của biểu thức: (a + b + c)^2/(a’^2 + b’^2 + c’^2). + Cho hai số dương a, b thỏa mãn: a + b = 1. Tìm giá trị nhỏ nhất của biểu thức: A = 1/ab + 1/(a^2 + b^2). + Tìm các số nguyên x để biểu thức x^4 – x^2 + 2x + 2 là số chính phương.
Đề thi học sinh giỏi Toán 9 năm 2019 - 2020 phòng GDĐT Thị xã Quảng Trị
Đề thi học sinh giỏi Toán 9 THCS năm học 2019 – 2020 phòng Giáo dục và Đào tạo Thị xã Quảng Trị gồm 05 bài toán, đề có thang điểm 20, gồm 01 trang, kỳ thi nhằm tuyển chọn các em học sinh lớp 9 có thành tích học tập môn Toán xuất sắc để tuyên dương, khen thưởng và thành lập đội tuyển học sinh giỏi Toán 9. Trích dẫn đề thi học sinh giỏi Toán 9 năm 2019 – 2020 phòng GD&ĐT Thị xã Quảng Trị : + Cho a, b, c là ba số thực không âm và thỏa mãn a + b + c = 1. Tìm giá trị nhỏ nhất của biểu thức A = √(5a + 4) + √(5b + 4) + √(5c + 4). [ads] + Cho hình vuông ABCD có E nằm trên đường chéo AC sao cho AE = 3EC, F là trung điểm AD. Chứng minh tam giác BEF vuông cân. + Cho tam giác ABC vuông tại A. Gọi H là hình chiếu vuông góc của A trên BC và E, F lần lượt là hình chiếu vuông góc của H trên AB, AC. a) Chứng minh: BE/CF = AB^3/AC^3. a) Ching minn: CFAC: b) Gọi S1, S2 lần lượt là diện tích tam giác ABC và diện tích hình chữ nhật AEHF. Tìm đặc điểm của tam giác ABC để S2/S1 đạt giá trị lớn nhất.