Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi cấp tỉnh lớp 9 môn Toán năm 2022 2023 sở GD ĐT Hà Nam

Nội dung Đề học sinh giỏi cấp tỉnh lớp 9 môn Toán năm 2022 2023 sở GD ĐT Hà Nam Bản PDF - Nội dung bài viết Sytu giới thiệu Đề học sinh giỏi cấp tỉnh lớp 9 môn Toán năm 2022 - 2023 sở GD ĐT Hà Nam Sytu giới thiệu Đề học sinh giỏi cấp tỉnh lớp 9 môn Toán năm 2022 - 2023 sở GD ĐT Hà Nam Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 9 THCS năm học 2022 - 2023 của sở Giáo dục và Đào tạo UBND tỉnh Hà Nam. Đề thi sẽ được thi hình thức tự luận với 06 bài toán, thời gian làm bài 150 phút. Đề thi sẽ đi kèm đáp án, lời giải chi tiết và bảng hướng dẫn chấm điểm để giúp các em tự kiểm tra và tự đánh giá kết quả của mình. Dưới đây là một số câu hỏi mẫu trong Đề học sinh giỏi cấp tỉnh Toán lớp 9 năm 2022 - 2023 của sở GD&ĐT Hà Nam: 1. Cho parabol P : y = x^2 và hai điểm A(2,4) và B(8,8) nằm trên đồ thị của P. Gọi M là điểm thay đổi trên P và có hoành độ là m. Tìm giá trị của m để diện tích tam giác ABM là lớn nhất. 2. Cho đường tròn (O;R) có đường kính AB. Gọi C là điểm sao cho tam giác ABC là nhọn. Các đường thẳng CA, CB cắt đường tròn (O) tại các điểm D, E. Trên cung AB không chứa D, lấy điểm F sao cho 0 < FA < FB. Đường thẳng CF cắt AB tại M, cắt đường tròn O tại N (N khác F) và cắt đườn tròn (O') tại P (P khác C). Hỏi: (a) Khi 0 < ACB = 60 độ, tính độ dài DE theo R. (b) Chứng minh rằng CN/CF = CP/CM. (c) Gọi I, H lần lượt là hình chiếu vuông góc của F lên BD, AB. Các đường thẳng IH và CD cắt nhau tại K. Tìm vị trí của điểm F để biểu thức AB/BD + AD/FH + FI/FK đạt giá trị nhỏ nhất. 3. Cho góc xOy nhọn và A là điểm cố định trên Ox. Đường tròn (I) tiếp xúc với Ox, Oy tại E, D. Gọi AF là tiếp tuyến thứ 2 từ A đến đường tròn (I) (F là tiếp điểm). Chứng minh rằng đường thẳng DF luôn đi qua một điểm cố định. File WORD chuẩn bị cho quý thầy cô có thể tải về để sử dụng. Hy vọng rằng Đề thi sẽ giúp các em ôn tập và nắm vững kiến thức, chuẩn bị tốt cho kỳ thi sắp tới. Chúc các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi cấp tỉnh Toán 9 năm 2022 - 2023 sở GDĐT Quảng Ngãi
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Quảng Ngãi; đề thi có đáp án, lời giải chi tiết và thang điểm; kỳ thi được diễn ra vào ngày 16 tháng 02 năm 2023. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán 9 năm 2022 – 2023 sở GD&ĐT Quảng Ngãi : + Một học sinh có tấm bìa hình vuông ABCD cạnh 20 cm. Em muốn cắt tấm bìa này thành bốn hình tam giác vuông bằng nhau và phần còn lại là hình vuông MNPQ thỏa mãn M N PQ lần lượt thuộc các cạnh AB BC CD DA. Hãy xác định vị trí các điểm M N PQ để diện tích hình vuông MNPQ là nhỏ nhất. + Cho đường tròn tâm O đường kính AB R 2. Điểm M di động trên đoạn OA (M khác A), vẽ đường tròn tâm K đường kính MB. Gọi I là trung điểm của đoạn MA, đường thẳng đi qua I vuông góc với AB cắt đường tròn (O) tại C và D. Đường thẳng CB cắt đường tròn (K) tại P. a) Chứng minh rằng ba điểm P M D thẳng hàng. b) Chứng minh rằng PI là tiếp tuyến của đường tròn (K). c) Tìm vị trí của M trên đoạn OA để diện tích tam giác IPK lớn nhất. + Người ta làm một cái hộp hình vuông để đựng được 5 cái bánh hình tròn có đường kính 6 cm sao cho không có bất kì hai cái bánh nào được chồng lên nhau. Hãy tính cạnh nhỏ nhất của cái hộp.
Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 - 2023 sở GDĐT Quảng Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán Trung học Cơ sở năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Quảng Ninh; kỳ thi được diễn ra vào thứ Ba ngày 14 tháng 03 năm 2023. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 – 2023 sở GD&ĐT Quảng Ninh : + Với n là số nguyên, chứng minh rằng giá trị của biểu thức A = 3n3 – 3n2 + n + 1 không chia hết cho 125. Tìm tất cả các bộ ba số nguyên tố (p; q; r) thỏa mãn (p2 + 1)(q2 + 3) = r2 + 21. + Cho tam giác ABC nhọn nội tiếp đường tròn (O). Gọi (I) là đường tròn đi qua A và tiếp xúc với BC tại C. Đường trung tuyến AD của tam giác ABC cắt đường tròn (I) tại M (M khác A). Đường thẳng BM cắt AC và đường tròn (O) lần lượt tại H và F (F khác B). Đường thẳng CM cắt AB và đường tròn (O) lần lượt tại K và E (E khác C). a) Chứng minh DBM đồng dạng DAB. b) Chứng minh AKMH là tứ giác nội tiếp. c) Đường thẳng BM cắt đường tròn (I) tại Q (Q khác M). Chứng minh đường thẳng AF đi qua trung điểm của đoạn thẳng CQ. + Một phố nhỏ có 44 người trong độ tuổi từ 1 đến 85 (tuổi của mỗi người là một số nguyên dương). Chứng minh rằng trong số những người trên có hai người cùng tuổi hoặc có ba người mà tuổi của một người bằng tổng số tuổi của hai người kia.
Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 - 2023 sở GDĐT Sơn La
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán Trung học Cơ sở năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Sơn La; kỳ thi được diễn ra vào thứ Bảy ngày 11 tháng 03 năm 2023. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 – 2023 sở GD&ĐT Sơn La : + Trong mặt phẳng tọa độ Oxy cho đường thẳng (d) có phương trình y = 2x − a2 và parabol (P) có phương trình: y = ax2 (a > 0). a) Tìm a để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt A và B. Chứng minh rằng khi đó A và B nằm bên phải trục tung. b) Gọi xA, xB là hoành độ của A và B. Tìm giá trị nhỏ nhất của biểu thức: T = 4/(xA + xB) + 1/xA.xB. + Cho tam giác ABC nhọn nội tiếp đường tròn (O). Gọi BD và CE là hai đường cao của ABC. Gọi R là giao điểm của BD với (O) (R khác điểm B), S là giao điểm của CE với (O) (S khác điểm C). Tia AO cắt BC tại M và cắt cung nhỏ BC tại N. Tia BO cắt AC tại P. Tia CO cắt AB tại F. a) Chứng minh: Tam giác ADE đồng dạng với tam giác ABC. b) Chứng minh: DE // SR và AN là tia phân giác của góc SAR. c) Chứng minh: MB.MC/MA2 + PC.PA/PB2 + FA.FB/FC2 = 1 + Xét 100 số tự nhiên liên tiếp 1, 2, 3, …, 100. Gọi A là số thu được bằng cách sắp một cách tùy ý 100 số đó thành một dãy, B là số thu được bằng cách đặt một cách tùy ý các dấu cộng vào giữa các chữ số của A. Chứng minh rằng cả A và B cùng không chia hết cho 2046.
Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 - 2023 sở GDĐT Đắk Nông
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán Trung học Cơ sở năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Đắk Nông; kỳ thi được diễn ra vào thứ Năm ngày 09 tháng 03 năm 2023. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 – 2023 sở GD&ĐT Đắk Nông : + Một xe tải có chiều rộng là 2,4 m chiều cao là 2,5 m muốn đi qua một cái cổng hình Parabol (Hình minh họa). Biết khoảng cách giữa hai chân cổng là 4m và khoảng cách từ đỉnh cổng tới mỗi chân cổng là 25 m (bỏ qua độ dày của cổng). a) Trong mặt phẳng tọa độ Oxy gọi Parabol (P): y = ax2 với a < 0 là hình biểu diễn cổng mà xe tải muốn đi qua. Chứng minh a = −1. b) Hỏi xe tải có đi qua cổng được không? Tại sao? + Một cái tháp được xây dựng bên bờ một con sông, từ một điểm đối diện với tháp ngay bờ bên kia người ta nhìn thấy đỉnh tháp với góc nâng 60°. Từ một điểm khác cách điểm ban đầu 20m người ta cũng nhìn thấy đỉnh tháp với góc nâng 30 (Hình minh họa). Tính chiều cao của tháp và bề rộng của con sông. + Cho tam giác ABC có ba góc nhọn (AB < AC) nội tiếp đường tròn tâm O bán kính R. Vẽ đường tròn tâm K đường kính BC, cắt cạnh AB và AC lần lượt tại điểm F và E. Gọi H là giao điểm của BE và CF. a) Chứng minh: AF.AB = AE.AC. b) Từ A vẽ các tiếp tuyến AM và AN với đường tròn (K) (với M, N là hai tiếp điểm; N thuộc cung EC). Chứng minh: ba điểm M, H, N thẳng hàng.