Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi tỉnh Toán 9 năm 2021 - 2022 sở GDĐT Hà Tĩnh

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Hà Tĩnh; đề thi có đáp án và lời giải chi tiết (đáp án và lời giải chi tiết được biên soạn bởi thầy giáo Nguyễn Ngọc Hùng – giáo viên Toán trường THCS Hoàng Xuân Hãn – Hà Tĩnh). Trích dẫn đề thi học sinh giỏi tỉnh Toán 9 năm 2021 – 2022 sở GD&ĐT Hà Tĩnh : + Trên bảng có 2022 số tự nhiên khác nhau từ 1 đến số 2022. Lần thứ nhất xóa đi 2 số bất kì và viết tổng của chúng lên bảng, lúc này trên bảng còn 2021 số. Lần thứ hai xóa đi 2 số bất kì và viết tổng của chúng lên bảng và cứ tiếp tục như vậy. Hỏi lần thứ 2021, trên bảng còn lại số nào? + Cho hình vuông cạnh 2a và hai nửa đường tròn bán kính cùng bằng a, tiếp xúc với nhau như hình vẽ. Một đường tròn (I) tiếp xúc với hai nửa đường tròn đã cho và tiếp xúc với cạnh hình vuông. Tính diện tích hình tròn (I). + Cho đường tròn (O) đường kính BC và điểm A di động trên đường tròn (O) (A khác B và C). Gọi H là chân đường vuông góc kẻ từ A đến cạnh BC của tam giác ABC. Gọi D là trung điểm của HC. Qua H kẻ đường thẳng vuông góc với AD cắt AB tại E. a) Chứng minh rằng HD.HE = AD.AH b) Chứng minh rằng B là trung điểm của AE. Tìm quỹ tích điểm E.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi cấp tỉnh Toán 9 năm 2023 - 2024 sở GDĐT Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Hải Dương; kỳ thi được diễn ra vào thứ Sáu ngày 12 tháng 01 năm 2024. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán 9 năm 2023 – 2024 sở GD&ĐT Hải Dương : + Cho a, b là các số tự nhiên thỏa mãn 2a2 + a = 3b2 + b. Chứng minh rằng 2a + 2b + 1 và 3a + 3b + 1 đều là các số chính phương. + Cho tam giác ABC cân tại A, O là trung điểm của BC. Đường tròn tâm O tiếp xúc với hai cạnh AB, AC tại H và K. Gọi P, Q là hai điểm lần lượt thuộc các cạnh AB và AC sao cho POQ = ABC. a) Chứng minh rằng PQ là tiếp tuyến của đường tròn (O). b) HK cắt OQ tại D. Chứng minh rằng PD vuông góc với OQ. + Cho tam giác ABC có ba góc nhọn và có trực tâm H. Gọi D, E, F lần lượt là chân ba đường cao kẻ từ các đỉnh A, B, C của tam giác ABC. Chứng minh rằng?
Đề học sinh giỏi tỉnh Toán 9 năm 2023 - 2024 sở GDĐT Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Hà Tĩnh; kỳ thi được diễn ra vào thứ Sáu ngày 12 tháng 01 năm 2024; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề học sinh giỏi tỉnh Toán 9 năm 2023 – 2024 sở GD&ĐT Hà Tĩnh : + Cho đường thẳng (d): y = (m − 1)x + 3. Tìm tất cả các giá trị của m để đường thẳng (d) cắt trục Ox, Oy lần lượt tại hai điểm A và B sao cho tam giác AOB vuông cân. + Bạn Hà làm một bài thi gồm 20 câu hỏi. Mỗi câu trả lời đúng được 5 điểm, mỗi câu trả lời sai bị trừ 1 điểm, mỗi câu bỏ qua không trả lời được 0 điểm. Tính số câu trả lời đúng, số câu trả lời sai, số câu bỏ qua không trả lời của bạn Hà, biết rằng bạn Hà được 57 điểm. + Cho hình vẽ, biết rằng AE = 2, ED = 3, CB = 6. Trong đó AB và CD cùng vuông góc với AD tại A và tại D. Tìm độ dài đoạn BE.
Đề chọn HSG Toán 9 vòng 3 năm 2023 - 2024 phòng GDĐT Hoàng Mai - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn đội tuyển học sinh giỏi môn Toán 9 vòng 3 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND thị xã Hoàng Mai, tỉnh Nghệ An. Trích dẫn Đề chọn HSG Toán 9 vòng 3 năm 2023 – 2024 phòng GD&ĐT Hoàng Mai – Nghệ An : + Cho đường tròn (O;R) và điểm A cố đỉnh với OA = 2R; đường kính BC quay quanh O sao cho tam giác ABC là tam giác nhọn. Đường tròn ngoại tiếp tam giác ABC cắt đường thẳng OA tại điểm thứ hai là I. Các đường thẳng AB, AC cắt (O;R) lần lượt tại điểm thứ hai là D và E. Gọi K là giao điểm của DE với OA. a) Chứng minh AK.AI = AE.AC. b) Tính độ dài đoạn AK theo R. c) Chứng minh tâm đường tròn ngoại tiếp tam giác ADE luôn thuộc một đường thẳng cố định. + Cho 8 đoạn thẳng có độ dài lớn hơn 10 và nhỏ hơn 210. Chứng minh rằng trong đoạn thẳng đó luôn tìm được 3 đoạn thẳng để ghép thành một tam giác.
Đề khảo sát HSG Toán 9 lần 2 năm 2023 - 2024 phòng GDĐT Bình Xuyên - Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng đội tuyển học sinh giỏi môn Toán 9 lần 2 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Bình Xuyên, tỉnh Vĩnh Phúc; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát HSG Toán 9 lần 2 năm 2023 – 2024 phòng GD&ĐT Bình Xuyên – Vĩnh Phúc : + Cho tam giác ABC. Trên tia đối của tia BA lấy điểm K, trên tia đối của tia CA lấy điểm N. Gọi E là giao điểm của CK và BN. Gọi M là giao điểm của AE và BC. Chứng minh rằng: AE AK AN EM KB NC. + Cho tam giác ABC có BAC ABC 90 20. Các điểm E và F lần lượt nằm trên các cạnh AC AB sao cho ABE = 10 và ACF = 30. Tính CFE. + Anh Vượng dự định trồng điều và cà phê trên một mảnh đất có diện tích 12 ha. Nếu trồng 1 ha điều thì cần 10 ngày công và thu được 300 triệu đồng. Nếu trồng 1 ha cà phê thì cần 4 ngày công và thu được 150 triệu đồng. Anh Vượng cần trồng bao nhiêu hecta cho mỗi loại cây để thu được nhiều tiền nhất? Biết rằng anh Vượng chỉ có thể sử dụng không quá 60 ngày công cho việc trồng điều và cà phê.