Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Giải toán 12 khối đa diện và khối tròn xoay - Trần Đức Huyên

Cuốn sách Giải toán 12 khối đa diện và khối tròn xoay được biên soạn bám sát cấu trúc của sách giáo khoa Hình học 12, sách được biên soạn bởi các tác giả Trần Đức Huyên (chủ biên), Nguyễn Duy Hiếu, Phạm Thị Bé Hiền. Chương I . KHỐI ĐA DIỆN. THỂ TÍCH CỦA KHỐI ĐA DIỆN Bài 1. Khái niệm về khối đa diện. + Vấn đề 1. Chứng minh một số tính chất liên quan đến đỉnh, cạnh và mặt của một khối đa diện. + Vấn đề 2. Phân chia và lắp ghép các khối đa diện. Bài 2. Phép đối xứng qua mặt phẳng. Sự bằng nhau của các khối đa diện. + Vấn đề 1. Chứng minh hai hình bằng nhau. + Vấn đề 2. Chứng minh một phép biến hình là phép dời hình. Bài 3. Phép vị tự. Sự đồng dạng của các khối đa diện. Các khối đa diện đều. Bài 4. Thể tích của khối đa diện. [ads] Chương II . MẶT CẦU. MẶT TRỤ. MẶT NÓN Bài 1. Mặt cầu. Khối cầu. + Vấn đề 1. Xác định mặt cầu. + Vấn đề 2. Mặt cầu ngoại tiếp, nội tiếp hình chóp. + Vấn đề 3. Diện tích mặt cầu. Thể tích khối cầu. + Vấn đề 4. Tiếp tuyến của mặt cầu. Bài 2. Mặt trụ. Hình trụ. Khối trụ. + Vấn đề 1. Xác định mặt trụ. + Vấn đề 2. Diện tích xung quanh hình trụ. Thể tích khối trụ. + Vấn đề 3. Thiết diện của hình trụ cắt bởi một mặt phẳng. Bài 3. Mặt nón. Hình nón. Khối nón. + Vấn đề 1. Diện tích xung quanh. Diện tích toàn phần hình nón. Thể tích khối nón. + Vấn đề 2. Hình nón nội tiếp, ngoại tiếp hình chóp. Hình nón nội tiếp, ngoại tiếp mặt cầu. Bài 4. Tổ hợp hình cầu, hình trụ, hình nón.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề mặt nón - mặt trụ - mặt cầu - Trần Đình Cư
Tài liệu gồm 58 trang với lý thuyết và bài tập trắc nghiệm chủ đề mặt nón, mặt trụ và mặt cầu, các bài tập đều có đáp án và lời giải chi tiết. HÌNH NÓN, MẶT NÓN, KHỐI NÓN 1. Định nghĩa mặt nón Cho đường thẳng Δ. Xét một đường thẳng d cắt Δ tại O và không vuông góc với Δ. Mặt tròn xoay sinh bởi đường thẳng d như thế khi quay quanh Δ gọi là mặt nón tròn xoay (hay đơn giản là mặt nón). 2. Hình nón tròn xoay Cho ΔOIM vuông tại I quay quanh cạnh góc vuông OI thì đường gấp khúc OIM tạo thành một hình, gọi là hình nón tròn xoay (gọi tắt là hình nón). 3. Công thức diện tích và thể tích của hình nón Cho hình nón có chiều cao là h, bán kính đáy r và đường sinh là l thì có: Diện tích xung quanh: Sxq=π.r.l Diện tích đáy (hình tròn): Sd = πr^2 Diện tích toàn phần hình tròn: S = Sd + Sxq Thể tích khối nón: V = 1/3.π.r^2.h 4. Tính chất [ads] MẶT TRỤ – HÌNH TRỤ VÀ KHỐI TRỤ 1. Mặt trụ Mặt trụ là hình tròn xoay sinh bởi đường thẳng l khi xoay quanh đường thẳng song song và cách l một khoảng R. Lúc đó, được gọi là trục, R gọi là bán kính, l gọi là đường sinh. Mặt trụ là tập hợp tất cả những điểm cách đường thẳng cố định một khoảng R không đổi. 2. Hình trụ Hình trụ là hình giới bạn bởi mặt trụ và hai đường tròn bằng nhau, là giao tuyến của mặt trụ và 2 mặt phẳng vuông góc với trục. Hình trụ là hình tròn xoay khi sinh bởi bốn cạnh của hình một hình chữ nhật khi quay xung quanh một đường trung bình của hình chữ nhật đó. 3. Khối trụ Khối trụ là hình trụ cùng với phần bên trong của hình trụ đó. MẶT CẦU – HÌNH CẦU VÀ KHỐI CẦU 1. Định nghĩa và các khái niệm 2. Vị trí tương đối giữa mặt cầu và mặt phẳng 3. Một sô dạng mặt cầu ngoại tiếp thường gặp Dạng 1. Hình chóp có các đỉnh nhìn hai đỉnh còn lại dưới 1 góc vuông Dạng 2. Hình chóp có các cạnh bên bằng nhau Dạng 3. Mặt cầu ngoại tiếp hình chóp có cạnh bên vuông góc với đáy Dạng 4. Mặt cầu ngoại tiếp hình chóp có mặt bên vuông góc với mặt đáy
Phương pháp giải nhanh bài toán mặt cầu ngoại tiếp hình chóp - Hoàng Trọng Tấn
Tài liệu Phương pháp giải nhanh bài toán mặt cầu ngoại tiếp hình chóp – Hoàng Trọng Tấn gồm 10 trang với các công thức giải nhanh kèm theo ví dụ minh họa và 27 bài toán trắc nghiệm áp dụng. Loại 1: Hình chóp có các đỉnh nhìn đoạn thẳng nối 2 đỉnh còn lại dưới 1 góc vuông Gọi d là độ dài đoạn thẳng trên thì ta có bán kính mặt cầu ngoại tiếp là: R = d/2 Loại 2 : Hình chóp đều Gọi h là độ cao hình chóp và k là chiều dài cạnh bên thì ta có bán kính mặt cầu là: R = k^2/2h [ads] Loại 3 : Hình chóp có cạnh bên vuông góc với đáy Gọi h là chiều cao hình chóp và Rđ là bán kính của đáy thì bán kính mặt cầu: R = √(Rđ^2 + (h/2)^2) Loại 4: Hình chóp có mặt bên vuông góc với đáy Gọi h là chiều cao hình chóp và Rb, Rđ là bán kính của mặt bên, mặt đáy, GT là độ dài giao tuyến của mặt bên và đáy thì bán kính mặt cầu: R = √(Rb^2 + Rđ^2 – GT^2/4) Bài tập vận dụng
Tuyển tập các bài toán hình học không gian - Châu Ngọc Hùng
Tuyển tập các bài toán hình học không gian được phân dạng theo khối hình, tài liệu gồm 75 trang do thầy Châu Ngọc Hùng biên soạn. Trích dẫn tài liệu : + Cho hình chóp S.ABCD có đáy ABCD là hình thoi; hai đường chéo AC = 2√3a, BD = 2a và cắt nhau tại O; hai mặt phẳng (S AC) và (SBD) cùng vuông góc với mặt phẳng (ABCD). Biết khoảng cách từ điểm O đến mặt phẳng (S AB) bằng a = √3/4, tính thể tích khối chóp S.ABCD theo a. [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình vuông và tam giác SAB là tam giác cân tại đỉnh S. Góc giữa đường thẳng S A và mặt phẳng đáy bằng 45 độ, góc giữa mặt phẳng (SAB) và mặt phẳng đáy bằng 60 độ. Tính thể tích khối chóp S.ABCD, biết rằng khoảng cách giữa hai đường thẳng CD và SA bằng a√6. + Cho lăng trụ tam giác ABC.A1B1C1 có tất cả các cạnh bằng a, góc tạo bởi cạnh bên và mặt đáy bằng 30 độ. Hình chiếu vuông góc H của đỉnh A trên mặt phẳng (A1B1C1) thuộc đường thẳng B1C1. Tính thể tích khối lăng trụ ABC.A1B1C1 và tính khoảng cách giữa hai đường thẳng AA1 và B1C1 theo a.
Chuyên đề hình học không gian 2016 - Trần Quốc Nghĩa
Tài liệu chuyên đề hình học không gian 2016 do thầy Trần Quốc Nghĩa biên soạn gồm 2 phần: Phần 1: Tổng hợp các kiến thức hình học không gian, bao gồm: Các phương pháp chứng minh cơ bản trong hình học không gian 1. Chứng minh đường thẳng d song song mp(α) (d ⊄ (α)) 2. Chứng minh mp(α) song song với mp(β) 3. Chứng minh hai đường thẳng song song 4. Chứng minh đường thẳng d vuông góc với mặt phẳng (α) 5. Chứng minh hai đường thẳng d và d’ vuông góc 6. Chứng minh hai mặt phẳng (α) và (β) vuông góc [ads] Các công thức tính thường được sử dụng Cách vẽ và xác định các yếu tố góc, khoảng cách trong các khối đa diện thường gặp 1. Hình chóp S.ABCD, có đáy ABCD là hình chữ nhật (hoặc hình vuông) và SA vuông góc với đáy 2. Hình chóp S.ABCD, có đáy ABCD là hình thang vuông tại A và B và SA vuông góc với đáy 3. Hình chóp tứ giác đều S.ABCD 4. Hình chóp S.ABC, SA vuông góc với đáy 5. Hình chóp tam giác đều S.ABC 6. Hình chóp S.ABC có một mặt bên (SAB) vuông góc với đáy (ABCD) 7. Hình chóp S.ABCD có một mặt bên (SAB) vuông góc với đáy (ABCD) và ABCD là hình chữ nhật hoặc hình vuông 8. Hình lăng trụ 9. Mặt cầu ngoại tiếp hình chóp Phần 2: Tổng hợp 150 bài toán hình học không gian trong các đề thi thử 2016.