Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn HSG Toán 11 năm học 2019 - 2020 cụm Tân Yên - Bắc Giang

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi văn hóa môn Toán 11 năm học 2019 – 2020 cụm Tân Yên, tỉnh Bắc Giang; đề thi gồm có 40 câu trắc nghiệm (chiếm 14 điểm) và 03 câu tự luận (chiếm 06 điểm), học sinh có 120 phút để làm bài, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi chọn HSG Toán 11 năm học 2019 – 2020 cụm Tân Yên – Bắc Giang : + Trong tỉnh A tỉ lệ học sinh giỏi môn văn là 9%, học sinh giỏi môn toán là 12% và học sinh giỏi cả hai môn là 7%. Chọn ngẫu nhiên một học sinh của tỉnh. Tính xác suất để học sinh đó học giỏi Văn hoặc học giỏi Toán. + Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm các cạnh AB và AC, E là điểm trên cạnh CD với ED = 3EC. Thiết diện tạo bởi mặt phẳng (MNE) và tứ diện ABCD là? A. Tam giác MNE. B. Hình bình hành MNEF với F là điểm trên cạnh BD mà EF // BC. C. Hình thang MNEF với F là điểm trên cạnh BD mà EF // BC. D. Tứ giác MNEF với F là điểm bất kì trên cạnh BD. [ads] + Một công ty trách nhiệm hữu hạn thực hiện việc trả lương cho các kỹ sư theo phương thức sau: Mức lương của quý làm việc đầu tiên cho công ty là 13,5 triệu đồng/quý, và kể từ quý làm việc thứ hai, múc lương sẽ được tăng thêm 500.000 đồng mỗi quý. Tính tổng số tiền lương một kỹ sư nhận được sau ba năm làm việc cho công ty? + Từ các số 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số tự nhiên, mỗi số có 6 chữ số đồng thời thỏa mãn điều kiện :sáu số của mỗi số là khác nhau và trong mỗi số đó tổng của 3 chữ số đầu nhỏ hơn tổng của 3 chữ số sau một đơn vị? + Cho hai dãy ghế đối diện nhau, mỗi dãy có năm ghế. Xếp ngẫu nhiên 10 học sinh, gồm 5 nam và 5 nữ ngồi vào hai dãy ghế đó sao cho mỗi ghế có đúng một học sinh ngồi. Tính xác suất để mỗi học sinh nam đều ngồi đối diện với một học sinh nữ.

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn HSG Toán 11 năm 2020 - 2021 sở GDĐT Vĩnh Phúc
Thứ Ba ngày 06 tháng 04 năm 2021, sở Giáo dục và Đào tạo tỉnh Vĩnh Phúc tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 11 THPT năm học 2020 – 2021. Đề thi chọn HSG Toán 11 năm 2020 – 2021 sở GD&ĐT Vĩnh Phúc gồm 01 trang với 10 bài toán dạng tự luận, thời gian làm bài 180 phút.
Đề thi học sinh giỏi tỉnh Toán 11 năm 2020 - 2021 sở GDĐT Bắc Ninh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 11 năm học 2020 – 2021 sở GD&ĐT Bắc Ninh; đề thi được biên soạn theo dạng đề tự luận, đề gồm 02 trang với 07 bài toán, thời gian làm bài 150 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học sinh giỏi tỉnh Toán 11 năm 2020 – 2021 sở GD&ĐT Bắc Ninh : + Trong mặt phẳng với hệ tọa độ Oxy, cho hình vuông ABCD có tâm I(1;4), đỉnh A nằm trên đường thẳng có phương trình 2x + y – 1 = 0, đỉnh C nằm trên đường thẳng có phương trình x – y + 2 = 0. Tìm tọa độ các đỉnh của hình vuông đã cho. + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tất cả các cạnh bên đều bằng a. Gọi điểm M thuộc cạnh SD sao cho SD = 3SM, điểm G là trọng tâm tam giác BCD. a) Chứng minh rằng MG song song với mp(SBC). b) Gọi (α) là mặt phẳng chứa MG và song với CD. Xác định và tính diện tích thiết diện của hình chóp với mp (α). c) Xác định điểm P thuộc MA và điểm Q thuộc BD sao cho PQ song song với SC. Tính PQ theo a. + Có bao nhiêu số tự nhiên có 8 chữ số, trong đó có hai chữ số lẻ khác nhau và ba chữ số chẵn khác nhau, mà mỗi chữ số chẵn có mặt đúng hai lần.
Đề thi HSG Toán 11 lần 2 năm 2020 - 2021 trường THPT Đồng Đậu - Vĩnh Phúc
Đề thi HSG Toán 11 lần 2 năm học 2020 – 2021 trường THPT Đồng Đậu – Vĩnh Phúc gồm 02 trang với 10 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi HSG Toán 11 lần 2 năm 2020 – 2021 trường THPT Đồng Đậu – Vĩnh Phúc : + Một thợ thủ công muốn vẽ trang trí trên một hình vuông kích thước 4m x 4m, bằng cách vẽ một hình vuông mới với các đỉnh là trung điểm các cạnh của hình vuông ban đầu và tô kín màu lên hai tam giác đối diện (như hình vẽ). Quá trình vẽ và tô theo qui luật đó được lặp lại 5 lần. Tính số tiền nước sơn để người thợ thủ công đó hoàn thành trang trí hình vuông như trên? Biết tiền nước sơn để sơn 1m2 là 50.000 đồng. + Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD, có đỉnh A(-3;1), đỉnh C nằm trên đường thẳng d: x – 2y – 5 = 0. Trên tia đối của tia CD lấy điểm E sao cho CE = CD, biết N(6;-2) là hình chiếu vuông góc của D lên đường thẳng BE. Xác định tọa độ các đỉnh còn lại của hình chữ nhật ABCD. + Cho hình hộp ABCD.A’B’C’D’. Trên các đoạn thẳng AD’ và C’D lần lượt lấy hai điểm M, N sao cho đường thẳng MN song song với đường thẳng nối tâm của hình bình hành ABB’A’ và trung điểm của cạnh BC. Tính tỷ số MN/A’C.
Đề thi học sinh giỏi cấp tỉnh Toán 11 năm 2020 - 2021 sở GDĐT Bình Định
Thứ Năm ngày 18 tháng 03 năm 2021, sở Giáo dục và Đào tạo tỉnh Bình Định tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 11 THPT năm học 2020 – 2021. Đề thi học sinh giỏi cấp tỉnh Toán 11 năm 2020 – 2021 sở GD&ĐT Bình Định gồm 05 bài toán dạng tự luận, thời gian làm bài 150 phút.