Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tổng hợp lý thuyết nguyên hàm, tích phân và ứng dụng - Lê Minh Tâm

Tài liệu gồm 153 trang, được biên soạn bởi thầy giáo Lê Minh Tâm, tổng hợp lý thuyết chung và hướng dẫn giải các dạng bài tập chuyên đề nguyên hàm, tích phân và ứng dụng, giúp học sinh lớp 12 tham khảo khi học chương trình môn Toán 12 phần Giải tích chương 3. Chủ đề 01 . NGUYÊN HÀM. + Dạng 1.1. Nguyên hàm cơ bản 5. + Dạng 1.2. Nguyên hàm đổi biến 7. 1.2.1. Đổi biến loại 1 (Lượng giác hóa) 7. 1.2.2. Đổi biến loại 2 9. + Dạng 1.3. Nguyên hàm từng phần 11. + Dạng 1.4. Nguyên hàm hàm số hữu tỉ 13. 1.4.1. Bậc tử ≥ Bậc mẫu 13. 1.4.1. Bậc tử < Bậc mẫu 14. + Dạng 1.5. Nguyên hàm hàm số vô tỉ 23. + Dạng 1.6. Nguyên hàm hàm số lượng giác 23. + Dạng 1.7. Nguyên hàm có điều kiện 26. Chủ đề 02 . TÍCH PHÂN. + Dạng 2.1. Tích phân áp dụng tính chất & bảng nguyên hàm cơ bản 29. + Dạng 2.2. Tích phân từng phần 31. + Dạng 2.3. Tích phân đổi biến loại 1 33. + Dạng 2.4. Tích phân đổi biến loại 2 35. + Dạng 2.5. Tích phân kết hợp đổi biến & từng phần 37. + Dạng 2.6. Tích phân chứa trị tuyệt đối 39. + Dạng 2.7. Tích phân dựa vào đồ thị 41. + Dạng 2.8. Tích phân hàm chẵn lẻ 43. + Dạng 2.9. Tích phân hàm cho nhiều công thức 45. + Dạng 2.10. Tích phân liên quan max – min 47. + Dạng 2.11. Tích phân hàm “ẩn” 49. 2.11.1. Dùng phương pháp đổi biến 49. 2.11.2. Dùng phương pháp từng phần 51. + Dạng 2.12. Tích phân liên quan phương trình vi phân 53. 2.12.1. Biểu thức đạo hàm 53. 2.12.2. Biểu thức tổng hiệu 55. 2.12.2. Bài toán tổng quát 𝒇′(𝒙) + 𝒑(𝒙).𝒇(𝒙) = 𝒉(𝒙) 56. + Dạng 2.13. Bất đẳng thức tích phân 58. Chủ đề 03 . ỨNG DỤNG TÍCH PHÂN. + Dạng 3.1. Câu hỏi lý thuyết 63. + Dạng 3.2. Diện tích hình phẳng giới hạn bởi y = f(x), Ox, x = a, x = b 65. + Dạng 3.3. Diện tích hình phẳng giới hạn bởi y = f(x), y = g(x), x = a, x = b 66. + Dạng 3.4. Diện tích hình phẳng giới hạn bởi y = f(x), y = g(x), y = h(x) 67. + Dạng 3.5. Diện tích hình phẳng dựa vào đồ thị 68. + Dạng 3.6. Thể tích vật thể 70. + Dạng 3.7. Thể tích hình phẳng giới hạn bởi f(x), Ox, x = a, x = b quay quanh Ox 71. + Dạng 3.8. Thể tích hình phẳng giới hạn bởi f(x), g(x), x = a, x = b quay quanh Ox 72. + Dạng 3.9. Thể tích hình phẳng giới hạn bởi f(y), g(y), y = a, y = b quay quanh Oy 73. + Dạng 3.10. Tính giá trị hàm qua diện tích hình phẳng 74.

Nguồn: toanmath.com

Đọc Sách

50 bài trắc nghiệm tích phân cơ bản thường gặp - Phạm Ngọc Tính
Tuyển tập 50 bài toán trắc nghiệm chuyên đề tích phân cơ bản và thường gặp trong các đề thi trắc nghiệm do thầy Phạm Ngọc Tính biên soạn. Tài liệu gồm 16 trang có đáp án. Trích dẫn tài liệu : + Hãy chọn kết luận sai: A. d(…) = 2xdx chỗ trống là x^2 + C B. d(…) = 3xdx thì chỗ trống là x^4 + C C. d(…) = cosxdx thì chỗ trống bằng sinx + C D. d(…) = (1 + tan2x)dx thì chỗ trống là tanx + C [ads] + F(x) là một nguyên hàm của hàm số y = cos2x/[(cosx)^2.(sinx)^2]. Nếu F(π/4) = 0 thì ∫cos2x/[(cosx)^2.(sinx)^2]dx bằng: A. tanx + cotx + 2 B. tanx + cotx – 2 C. -tanx – cotx + 2 D. -tanx – cotx – 2 + F(x) là một nguyên hàm của hàm số y = tanx. Nếu F(π/3) = ln 8 thì tanxdx bằng: A. ln|cosx| + ln 3 B. -ln|cosx| + ln 4 C. ln|cosx| – ln 3 D. -ln|cosx| + ln 4
Phân dạng các bài toán tích phân - Phạm Minh Tứ
Tài liệu phân dạng các bài toán tích phân của thầy giáo Phạm Minh Tứ gồm 42 trang. Các bài toán tích phân được phân loại theo phương pháp giải, các ví dụ mẫu và bài tập đều có lời giải chi tiết. Nội dung tài liệu: I. Khái niệm tích phân II. Tính chất của tích phân III. Các phương pháp tính tích phân A. Phương pháp phân tích: Trong phương pháp này, chúng ta cần: + Kỹ năng: Cần biết phân tích f(x) thành tổng, hiệu, tích, thương của nhiều hàm số khác, mà ta có thể sử dụng được trực tiếp bảng nguyên hàm cơ bản tìm nguyên hàm của chúng. + Kiến thức: Như đã trình bày trong phần “Nguyên hàm”, cần phải nắm trắc các kiến thức về Vi phân, các công thức về phép toán lũy thừa, phép toán căn bậc n của một số và biểu diễn chúng dưới dạng lũy thừa với số mũ hữu tỷ. [ads] B. Phương pháp đổi biến số I. Phương pháp đổi biến số dạng 1: Đặt x = v(t) II. Phương pháp đổi biến số dạng 2: Đặt t = u(x) Đối với tích phân hàm lượng giác ∫f(x)dx, ta có quy tắc đổi biến số sau: a. Nếu f(x) = R[(sinx)^m; (cosx)^n] thì ta chú ý: + Nếu m lẻ, n chẵn: đặt cosx = t + Nếu n lẻ, m chẵn: đặt sinx = t + Nếu m, n đều lẻ: đặt cosx = t hoặc sinx = t đều được + Nếu m, n đề chẵn: đặt tanx = t b. Phải thuộc các công thức lượng giác và các công thức biến đổi lượng giác, các hằng đẳng thức lượng giác: công thức hạ bậc, nhân đôi, nhân ba, tính theo tang góc chia đôi …. Nói chung để tính được một tích phân chứa các hàm số lượng giác, học sinh đòi hỏi phải có một số yếu tố sau: + Biến đổi lượng giác thuần thục + Có kỹ năng khéo léo nhận dạng được cách biến đỏi đưa về dạng đã biết trong nguyên hàm
Giải toán tích phân bằng nhiều cách - Nguyễn Thành Long
Tài liệu cung cấp các bài toán tích phân với nhiều lời giải khác nhau cho từng bài, qua đó sẽ giúp học sinh có cái nhìn đa chiều hơn, từ đó đúc kết được những cái hay, cái dở trong từng cách giải để rút kinh nghiệm cho bản thân và phát triển tư duy giải toán. Các bài tập trong tài liệu này được phân thành 4 dạng như sau: + I. TÍCH PHÂN HÀM HỮU TỶ + II. TÍCH PHÂN HÀM VÔ TỶ [ads] + III. TÍCH PHÂN HÀM SỐ MŨ VÀ LOGARIT + IV. TÍCH PHÂN HÀM LƯỢNG GIÁC Đây thực sự chưa phải là những bài toán và cách giải hay nhất, chưa có nhiều bài tập phong phú và đa dạng, song cũng góp phần nhỏ bé nào đó cho các bạn và những bài tập hay và những cách giải đặc sắc hơn.
Chuyên đề Tích phân - Đặng Thành Nam
Chuyên đề tích phân hướng dẫn phương pháp giải tích phân kèm theo ví dụ minh họa có lời giải chi tiết và các bài tập tự luyện. Các bài toán tích phân trong đề thi TSĐH được đánh giá là bài toán quan trọng, luôn xuất hiện dưới dạng tính tích phân trực tiếp hoặc là xác định diện tích, thể tích giới hạn bởi các đường cong. Để làm tốt dạng toán này học sinh nên lưu ý nhớ và vận dụng lịnh hoạt công thức các nguyên hàm cơ bản, cách xác định công thức tính thể tích và diện tích giới hạn bởi các đường cong. Hai phương pháp cơ bản được sử dụng xuyên suốt cho các bài toán tích phân là đổi biến và tích phân từng phần. [ads] Các dạng tích phân được đề cập : + Một số bài toán cơ bản + Tích phân các hàm phân thức hữu tỉ + Một số bài toán tích phân có mẫu số là đa thức + Tích phân hàm vô tỷ + Phương pháp tích phân từng phần + Tích phân với hàm số lượng giác + Dạng toán bổ sung + Tích phân của hàm tuần hoàn + Tích phân liên kết + Phương pháp đổi biến số không làm thay đổi cận + Đổi biến số dưới dạng lượng giác hóa + Bài toán diện tích hình phẳng và thể tích vật tròn xoay