Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra cuối kỳ 1 Toán 11 năm 2020 - 2021 sở GDKHCN Bạc Liêu

Thứ Năm ngày 31 tháng 12 năm 2020, sở Giáo dục, Khoa học và Công nghệ tỉnh Bạc Liêu tổ chức kỳ thi khảo sát chất lượng dạy và học môn Toán lớp 11 giai đoạn cuối học kì 1 năm học 2020 – 2021. Đề kiểm tra cuối kỳ 1 Toán 11 năm 2020 – 2021 sở GDKHCN Bạc Liêu mã đề 124 gồm 04 trang, đề được biên soạn theo hình thức trắc nghiệm kết hợp với tự luận, phần trắc nghiệm gồm 20 câu, chiếm 06 điểm, phần tự luận gồm 03 câu, chiếm 04 điểm, thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề kiểm tra cuối kỳ 1 Toán 11 năm 2020 – 2021 sở GDKHCN Bạc Liêu : + Trong một buổi chào cờ đầu tuần, lớp 11A có 43 học sinh trong đó có 3 bạn Quyết, Tâm, Học. Xếp tùy ý 43 học sinh trên ngồi vào một dãy ghế được đánh số từ 1 đến 43, mỗi học sinh ngồi một ghế. Xác suất để 3 bạn Quyết, Tâm, Học được sắp xếp ngồi vào các ghế được đánh số lần lượt là x, y, z sao cho y = (x + z)/2 là? + Một hãng taxi X áp dụng mức giá đối với khách hàng theo hình thức bậc thang như sau: Mỗi bậc áp dụng cho 10 km. Bậc 1 (áp dụng cho 10 km đầu) có giá 10.000 đồng / 1 km, giá mỗi km ở các bậc tiếp theo giảm 5% so với giá của bậc trước đó. Bạn Toàn thuê hãng taxi X đó để đi hết quãng đường 42 km. Tính số tiền mà bạn Toàn phải trả (kết quả làm tròn đến hàng nghìn). + Cho tập hợp A = {0;1;3;4;5;6;8;9}. Gọi S là tập hợp gồm các số tự nhiên có bốn chữ số khác nhau được lập từ A. Chọn một số từ S. Tính xác suất để số chọn được có tổng các chữ số là một số chẵn.

Nguồn: toanmath.com

Đọc Sách

Đề thi học kì 1 (HK1) lớp 11 môn Toán năm học 2017 2018 trường THPT Kim Liên Hà Nội
Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm học 2017 2018 trường THPT Kim Liên Hà Nội Bản PDF Đề thi HK1 Toán lớp 11 năm học 2017 – 2018 trường THPT Kim Liên – Hà Nội gồm 4 trang với 2 phần: + Phần trắc nghiệm: gồm 25 câu hỏi, thời gian làm bài 45 phút, đòi hỏi học sinh làm bài nhanh và chính xác. + Phần tự luận: gồm 4 bài toán tự luận, thời gian làm bài 45 phút, kiểm tra khả năng trình bày lời giải của học sinh. Đề thi có đáp án . Trích dẫn đề thi : + Cho hình bình hành ABCD, biết A và B cố định, điểm C di động trên đường thẳng Δ cố định. Khẳng định nào sau đây là đúng? A. Điểm D di động trên đường thẳng Δ’ là ảnh của Δ qua phép đối xứng trục AB B. Điểm D di động trên đường thẳng Δ’ là ảnh của Δ qua phép tịnh tiến theo vectơ BA C. Điểm D di động trên đường thẳng Δ’ là ảnh của Δ qua phép đối xứng tâm I (I là trung điểm của AB) D. Điểm D di động trên đường thẳng Δ’ là ảnh của Δ qua phép tịnh tiến theo vectơ AB [ads] + Cho hàm số y = tanx. Khẳng định nào sau đây là sai? A. Hàm số là hàm số chẵn B. Hàm số tuần hoàn với chu kỳ π C. Hàm số đồng biến trên mỗi khoảng (-π/2 + kπ; π/2 + kπ) k ∈ Z D. Tập xác định của hàm số là R\(π/2 + kπ) k ∈ Z + Trên giá sách có 6 quyển sách tiếng Việt khác nhau, 4 quyển sách tiếng Anh khác nhau, 7 quyển sách tiếng Pháp khác nhau. Hỏi có bao nhiêu cách lấy từ giá trên 3 quyển sách sao cho có đủ cả sách tiếng Việt, tiếng Anh và tiếng Pháp? A. 59   B. 17 C. 680   D. 168 Bạn đọc có thể theo dõi các đề thi HK1 Toán lớp 11
Đề thi học kì 1 (HK1) lớp 11 môn Toán năm học 2017 2018 trường THPT Lý Thánh Tông Hà Nội
Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm học 2017 2018 trường THPT Lý Thánh Tông Hà Nội Bản PDF Đề thi HK1 Toán lớp 11 năm học 2017 – 2018 trường THPT Lý Thánh Tông – Hà Nội gồm 4 câu hỏi trắc nghiệm và 25 câu hỏi tự luận, thời gian làm bài 90 phút, đề thi HK1 Toán lớp 11 có đáp án và lời giải chi tiết . Trích dẫn đề thi : + Cho tứ diện MNPQ. Gọi A, B là hai điểm phân biệt cùng thuộc đường thẳng MN; C, D là hai điểm phân biệt cùng thuộc đường thẳng PQ. Khi đó AC và BD có vị trí tương đối là: A. AC và BD chéo nhau B. AC ≡ BD C. AC cắt BD D. AC // BD [ads] + Hình chóp tứ giác S.ABCD, đáy ABCD là hình chữ nhật. Gọi M,N,P lần lượt là các điểm trên BC, DC và SC sao cho SC = 4SP, CM = 3MB, CN = 3ND. 1. Xác định giao tuyến của hai mặt phẳng (SAC) và (SBD) 2. Chứng minh SD song song với mặt phẳng (MNP) + Có 2 chiếc hộp, mỗi hộp chứa 5 chiếc thẻ đều được đánh số từ 1 đến 5. Từ mỗi hộp rút ngẫu nhiên ra 1 chiếc thẻ. Tính xác suất để rút được 2 thẻ có tổng số ghi trên 2 tấm thẻ bằng 7? File WORD (dành cho quý thầy, cô):
Đề thi học kì 1 (HK1) lớp 11 môn Toán năm học 2016 2017 trường THPT Yên Khánh B Ninh Bình
Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm học 2016 2017 trường THPT Yên Khánh B Ninh Bình Bản PDF Đề thi HK1 Toán lớp 11 năm học 2016 – 2017 trường THPT Yên Khánh B – Ninh Bình gồm 25 câu hỏi trắc nghiệm và 4 câu hỏi tự luận. Trích một số câu trong đề thi: 1. Khẳng định nào sau đây là khẳng định đúng? A. Hai đường thẳng phân biệt không song song thì chéo nhau B. Hai đường thẳng không có điểm chung thì chéo nhau C. Hai đường thẳng lần lượt nằm trên hai mặt phẳng phân biệt thì chéo nhau D. Hai đường thẳng chéo nhau thì không có điểm chung 2. Cho hình chóp S.ABCD có đáy là hình bình hành tâm O. Gọi M N, lần lượt là trung điểm SD, BC. a) Tìm giao tuyến của (SAC) và (SBD) b) Chứng minh rằng MN // (SAB) 3. Đội thanh niên xung kích của trường THPT Yên Khánh B có 12 học sinh gồm 5 học sinh lớp 12, 4 học sinh lớp 11 và 3 học sinh lớp 10. Chọn ngẫu nhiên 4 học sinh đi làm nhiệm vụ. Tính xác suất để 4 học sinh được chọn thuộc không quá 2 trong 3 lớp trên.
Đề thi học kì 1 (HK1) lớp 11 môn Toán năm học 2016 2017 sở GD và ĐT Quảng Nam
Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm học 2016 2017 sở GD và ĐT Quảng Nam Bản PDF Đề thi HK1 Toán lớp 11 năm học 2016 – 2017 sở GD và ĐT Quảng Nam gồm 25 câu hỏi trắc nghiệm và 4 câu hỏi tự luận. Trích một số câu trong đề thi: 1. Cho tứ diện ABCD; gọi M, N, K lần lượt là trung điểm của AB, BC, CD. Trong các khẳng định sau, khẳng định nào đúng? A. Giao tuyến của mặt phẳng (MNK) và mặt phẳng (ABD) đi qua trung điểm của AD B. Hai đường thẳng MN và BD cắt nhau C. Hai đường thẳng MK và AC cắt nhau D. AD song song với mặt phẳng (MNK) 2. Có 5 quyển sách khác nhau gồm 3 quyển sách Văn và 2 quyển sách Toán. Hỏi có bao nhiêu cách xếp 5 quyển sách trên lên kệ sách dài (xếp hàng ngang) sao cho tất cả quyển sách cùng môn phải đứng cạnh nhau 3. Cho hình chóp tứ giác S.ABCD có AB và CD không song song với nhau. Gọi M , N lần lượt là trung điểm của SC và SA. a/ Chứng minh đường thẳng MN song song với mặt phẳng (ABCD); tìm giao tuyến của mặt phẳng (DMN) và mặt phẳng (ABCD) b/ Gọi O là điểm nằm ở miền trong của tứ giác ABCD . Tìm giao điểm của đường thẳng SO và mặt phẳng (MAB)