Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra khảo sát lớp 9 môn Toán năm 2018 2019 phòng GD ĐT Thanh Xuân Hà Nội

Nội dung Đề kiểm tra khảo sát lớp 9 môn Toán năm 2018 2019 phòng GD ĐT Thanh Xuân Hà Nội Bản PDF - Nội dung bài viết Đề kiểm tra khảo sát Toán lớp 9 năm 2018 – 2019 phòng GD&ĐT Thanh Xuân – Hà Nội Đề kiểm tra khảo sát Toán lớp 9 năm 2018 – 2019 phòng GD&ĐT Thanh Xuân – Hà Nội Đề kiểm tra Toán lớp 9 năm 2018 – 2019 phòng GD&ĐT Thanh Xuân – Hà Nội bao gồm 5 bài toán tự luận trên 1 trang giấy. Thời gian làm bài là 120 phút, kỳ thi diễn ra vào thứ Sáu ngày 15 tháng 03 năm 2019. Trích dẫn đề kiểm tra Toán lớp 9 năm 2018 – 2019 phòng GD&ĐT Thanh Xuân – Hà Nội: + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Có một đội công nhân cần sản xuất 900 sản phẩm trong số ngày nhất định. Nhưng vì mỗi ngày họ sản xuất thêm 3 sản phẩm, nên họ đã vượt mục tiêu 90 sản phẩm và hoàn thành sớm 3 ngày. Hỏi theo kế hoạch, mỗi ngày đội công nhân cần sản xuất bao nhiêu sản phẩm? + Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): y = 2(m – 1)x + 5 – 2m (với m là tham số) và parabol (P): y = x^2. a) Chứng minh rằng với mọi giá trị của m, đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt. b) Tìm giá trị của m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt, mà tổng tung độ của hai điểm đó bằng 30. + Cho đường tròn (O; R) và một điểm A nằm ngoài đường tròn sao cho OA = 2R. Từ A kẻ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm). M là điểm bất kỳ trên cung nhỏ BC, tiếp tuyến tại M của đường tròn cắt các đường thẳng AB, AC lần lượt tại E và F. a) Chứng minh tứ giác ABOC là tứ giác nội tiếp. b) Chứng minh tam giác ABC là tam giác đều. c) Chứng minh khi M di chuyển trên cung nhỏ BC, chu vi tam giác AEF không đổi. Tính chu vi tam giác AEF theo R. d) Xác định vị trí của M trên cung nhỏ BC sao cho đoạn EF có độ dài nhỏ nhất.

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát Toán 9 năm 2022 - 2023 phòng GDĐT Diễn Châu - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Diễn Châu, tỉnh Nghệ An; đề thi gồm 01 trang, hình thức tự luận với 05 bài toán, thời gian làm bài 120 phút; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát Toán 9 năm 2022 – 2023 phòng GD&ĐT Diễn Châu – Nghệ An : + Cho phương trình 2 x m xm 2 20 (m tham số). a) Giải phương trình với m = 1. b) Tìm m để phương có 2 nghiệm phân biệt 1 2 x x thỏa mãn 2 1 2 xm xm 2 2 2022. + Hai lớp 9A và 9B cùng tu sửa khu vườn thực nghiệm của nhà trường trong 4 ngày thi làm xong. Nếu mỗi lớp tu sửa một mình, muốn hoàn thành xong công việc ấy thì lớp 9A cần ít thời gian hơn lớp 9B là 6 ngày. Hỏi mỗi lớp làm một mình cần bao nhiêu ngày để hoàn thành công việc? + Cho tam giác ABC có ba góc nhọn (AB < AC), nội tiếp đường tròn tâm O. Các đường cao AD, BE, CF của tam giác ABC cắt nhau tại H. Gọi M là giao điểm của EF và BC. Qua B kẻ đường thẳng song song với AC cắt AM tại P và AD tại Q. a) Chứng minh tứ giác AEHF nội tiếp. b) Chứng minh DFC EFC. c) Chứng minh BP = BQ.
Đề khảo sát Toán 9 lần 1 năm 2022 - 2023 phòng GDĐT Hà Đông - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 lần 1 năm học 2022 – 2023 phòng Giáo dục và Đào tạo quận Hà Đông, thành phố Hà Nội; đề thi có đáp án và hướng dẫn chấm điểm; kỳ thi được diễn ra vào thứ Ba ngày 11 tháng 04 năm 2023. Trích dẫn Đề khảo sát Toán 9 lần 1 năm 2022 – 2023 phòng GD&ĐT Hà Đông – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Một ô tô dự định đi từ A đến B trong một thời gian nhất định. Nếu xe tăng vận tốc thêm 10 km/h thì đến B sớm hơn dự định 3 giờ, còn nếu xe giảm vận tốc 10 km/h thì đến B chậm mất 5 giờ. Tính vận tốc dự định và thời gian dự định của ô tô đi hết quãng đường AB? + Một thùng rác inox hình trụ có chiều cao là 60 cm, chu vi đường tròn đáy của thùng rác là 125,6 cm. Tính thể tích của thùng rác? (lấy pi = 3,14). + Trong mặt phẳng toạ độ Oxy cho đường thẳng (d): y = mx – m + 1 và Parabol (P): y = x2 (với m là tham số và m khác 1). a) Tìm m để đường thẳng (d) và Parabol (P) cắt nhau tại hai điểm phân biệt. b) Gọi giao điểm của (d) và (P) là A(x1;y1) và B(x2;y2). Gọi H và K lần lượt là hình chiếu của A và B trên trục Ox. Tìm m để AH + BK = 2.
Đề khảo sát chất lượng Toán 9 năm 2022 - 2023 phòng GDĐT Sóc Sơn - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Sóc Sơn, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 30 tháng 03 năm 2023.
Đề khảo sát Toán 9 năm 2022 - 2023 phòng GDĐT Quảng Xương - Thanh Hoá
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Quảng Xương, tỉnh Thanh Hoá (mã đề B); đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát Toán 9 năm 2022 – 2023 phòng GD&ĐT Quảng Xương – Thanh Hoá : + Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d) có phương trình: y n xn 1 2 (với n là tham số). Tìm n để đường thẳng (d) và đường thẳng y x 2 cắt nhau tại một điểm nằm trên trục tung. + Cho phương trình: x2 – 4x + m – 2 = 0. Tìm m để phương trình có hai nghiệm x1, x2 thỏa mãn: x1(2×1 + x2) – 8 = 4m + (x2 – 4)2. + Cho tam giác MNK nhọn (MN < MK) nội tiếp đường tròn (O; R). Các đường cao NE, KF của tam giác cắt nhau tại H (E thuộc MK, F thuộc MN). a) Chứng minh: Bốn điểm N, K, E, F cùng thuộc một đường tròn. b) Kẻ đường kính MA của đường tròn (O). Chứng minh: MA vuông góc với EF và NHKA là hình bình hành. c) Giả sử: NK cố định và M di chuyển trên cung lớn NK sao cho tam giác MNK luôn là tam giác nhọn. Tìm vị trí điểm M để diện tích tam giác EMH lớn nhất. Tính giá trị lớn nhất đó theo R khi NK R 3.