Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán 9 năm 2023 - 2024 phòng GDĐT Châu Đức - BR VT

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Châu Đức, tỉnh Bà Rịa – Vũng Tàu; kỳ thi được diễn ra vào ngày 06 tháng 03 năm 2024. Trích dẫn Đề học sinh giỏi Toán 9 năm 2023 – 2024 phòng GD&ĐT Châu Đức – BR VT : + Tìm số tự nhiên có 2 chữ số sao cho tích của số đó với tổng các chữ số của nó bằng tổng lập phương các chữ số của số đó. + Cho tam giác ABC nội tiếp đường tròn (O) và điểm D bất kì trên cạnh AB. Gọi M và N lần lượt là trung điểm của các cạnh BC và CA. Gọi P và Q là các giao điểm của MN với đường tròn (O) (điểm P thuộc cung nhỏ BC và điểm Q thuộc cung nhỏ CA). Gọi I là giao điểm khác B của BC với đường tròn ngoại tiếp tam giác BDP. Gọi K là giao điểm của DI với AC. a) Chứng minh tứ giác CIPK nội tiếp đường tròn. b) Chứng minh PK.QC = QB.PD. c) Gọi G là giao điểm khác P của AP với đường tròn ngoại tiếp tam giác BDP. Đường thẳng IG cắt BA tại E. Chứng minh khi D di chuyển trên cạnh AB thì tỉ số AD/AE không đổi. + Cho tam giác ABC vuông tại A, tia phân giác của góc A cắt BC ở D. Gọi M N lần lượt là hình chiếu của B C lên đường thẳng AD. Chứng minh AD ≤ 1/2(BM + CN).

Nguồn: toanmath.com

Đọc Sách

Đề thi học sinh giỏi cấp tỉnh Toán 9 năm 2020 - 2021 sở GDĐT Nghệ An
Đề thi học sinh giỏi cấp tỉnh Toán 9 năm học 2020 – 2021 sở GD&ĐT Nghệ An gồm đề bảng A và đề bảng B, đề thi có đáp án và lời giải chi tiết (lời giải được thực hiện bởi các thành viên Tạp Chí Và Tư Liệu Toán Học). Trích dẫn đề thi học sinh giỏi cấp tỉnh Toán 9 năm 2020 – 2021 sở GD&ĐT Nghệ An : + Cho tam giác nhọn ABC có D, E, F lần luợt là chân các đường cao kẻ từ ba đỉnh A, B, C của tam giác. Gọi H là trực tâm tam giác ABC và K là trung điềm của HC. a) Chứng minh rằng 4 điểm E, K, D, F cùng thuộc một dường tròn. b) Đường thẳng đi qua K song song với BC cắt DF tại M. Trên tia DE lấy điểm P sao cho MAP = BAC. Chứng minh rằng SAMF/SAMP = MF/MP (trong đó SAMF, SAMP lần lượt là diện tích các tam giác AMF và AMP). + Cho các số thực dương x, y, z thỏa mãn điều kiện x2 + y2 + z = 3xy. Chứng minh rằng. + Cho đa giác đều có 2021 đỉnh, sao cho mỗi đỉnh của đa giác đó chỉ được tô bằng một trong hai màu xanh hoặc đỏ. Chứng minh rằng tồn tại 3 đỉnh của đa giác đã cho là các đỉnh của một tam giác cân mà các đỉnh đó được tô cùng một màu.
Đề thi học sinh giỏi Toán THCS năm 2020 - 2021 sở GDĐT An Giang
Ngày 20 tháng 03 năm 2021, sở Giáo dục và Đào tạo tỉnh An Giang tổ chức kỳ thi chọn học sinh giỏi cấp Trung học Cơ sở môn Toán năm học 2020 – 2021. Đề thi học sinh giỏi Toán THCS năm 2020 – 2021 sở GD&ĐT An Giang gồm 01 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút.
Đề thi học sinh giỏi Toán 9 năm 2020 - 2021 sở GDĐT thành phố Hồ Chí Minh
Thứ Tư ngày 17 tháng 03 năm 2021, sở Giáo dục và Đào tạo thành phố Hồ Chí Minh tổ chức kỳ thi chọn học sinh giỏi lớp 9 cấp thành phố môn Toán năm học 2020 – 2021. Đề thi học sinh giỏi Toán 9 năm 2020 – 2021 sở GD&ĐT thành phố Hồ Chí Minh gồm 01 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút. Trích dẫn đề thi học sinh giỏi Toán 9 năm 2020 – 2021 sở GD&ĐT thành phố Hồ Chí Minh : + Cho tam giác ABC vuông tại A có đường phân giác trong BD (D thuộc AC). Đường tròn (BCD) cắt cạnh AB tại E. Chứng minh AE + AB = BC. + Cho bốn số thực a, b, c, d thỏa điều kiện a2 + b2 + c2 + d2 = 4. Chứng minh bất đẳng thức: (a + 2)(b + 2) >= cd. + Cho tứ giác ABCD (AB không song song với CD) nội tiếp đường tròn (O) và M là điểm chính giữa của cung nhỏ AB. Các dây MC, MD cắt AB lần lượt tại các điểm F, E. a) Chứng minh tứ giác CDEF nội tiếp. b) Gọi I là giao điểm của MC và BD. Gọi J là giao điểm của MD và AC. Chứng minh: IJ song song với AB. c) Đường thẳng IJ cắt AD, BC, CD lần lượt tại các điểm P, Q, K. Chứng minh: KP.KQ = KI.KJ.
Đề thi chọn học sinh giỏi Toán THCS năm 2020 - 2021 sở GDĐT Yên Bái
Thứ Sáu ngày 12 tháng 03 năm 2021, sở Giáo dục và Đào tạo tỉnh Yên Bái tổ chức kỳ thi chọn học sinh giỏi môn Toán bậc THCS năm học 2020 – 2021. Đề thi chọn học sinh giỏi Toán THCS năm 2020 – 2021 sở GD&ĐT Yên Bái gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút.