Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phân dạng câu hỏi và bài tập trong đề thi chính thức THPT Quốc gia 2018 môn Toán

Tài liệu gồm 71 trang phân dạng câu hỏi và bài tập trong đề thi chính thức THPT Quốc gia 2018 môn Toán theo các đơn vị kiến thức tương ứng với các nội dung bài học. Tài liệu được biên soạn theo hình thức LaTex, các câu hỏi và bài tập trong tài liệu đều được phân tích và giải chi tiết. Tài liệu thích hợp cho các em học sinh khối 12 dùng để rèn luyện chuẩn bị cho kỳ thi THPT Quốc gia năm 2019 môn Toán. Nội dung tài liệu phân dạng câu hỏi và bài tập trong đề thi chính thức THPT Quốc gia 2018 môn Toán : ĐẠI SỐ & GIẢI TÍCH 11 Chương 2 . Tổ hợp. Xác suất. Nhị thức Newton §1. Hoán vị-chỉnh hợp-tổ hợp Dạng toán. Bài toán chỉ sử dụng P hoặc C hoặc A. §2. Nhị thức Newton Dạng toán. Tìm hệ số, số hạng trong khai triển nhị thức Newton. §3. Xác suất của biến cố Dạng toán 1. Tính xác suất bằng định nghĩa. Dạng toán 2. Tính xác suất bằng công thức nhân. Chương 3 . Dãy số – Cấp số cộng- Cấp số nhân §1. Dãy số Dạng toán. Tìm hạng tử trong dãy số. Chương 4 . Giới hạn §1. Giới hạn của dãy số Dạng toán. Dùng phương pháp đặt thừa số. §2. Giới hạn của hàm số Dạng toán. Dạng vô cùng chia vô cùng, số chia vô cùng. HÌNH HỌC 11 Chương 3 . Véc-tơ trong không gian. Quan hệ vuông góc trong không gian §1. Hai đường thẳng vuông góc Dạng toán. Xác định góc giữa hai đường thẳng (dùng định nghĩa). §2. Đường thẳng vuông góc với mặt phẳng Dạng toán 1. Xác định quan hệ vuông góc giữa đường thẳng và mặt phẳng, đường thẳng và đường thẳng. Dạng toán 2. Xác định góc giữa hai mặt phẳng, đường thẳng và mặt phẳng. §3. Hai mặt phẳng vuông góc Dạng toán. Xác định góc giữa hai mặt phẳng, đường và mặt. §4. Khoảng cách Dạng toán 1. Tính độ dài đoạn thẳng và khoảng cách từ một điểm đến một đường thẳng. Dạng toán 2. Khoảng cách từ một điểm đến một mặt phẳng. Dạng toán 3. Khoảng cách giữa hai đường thẳng chéo nhau. GIẢI TÍCH 12 Chương 1 . Ứng dụng đạo hàm để khảo sát hàm số §1. Sự đồng biến và nghịch biến của hàm số Dạng toán 1. Xét tính đơn điệu của hàm số cho bởi công thức. Dạng toán 2. Xét tính đơn điệu dựa vào bảng biến thiên, đồ thị. Dạng toán 3. Tìm tham số m để hàm số đơn điệu. Dạng toán 4. Ứng dụng tính đơn điệu để chứng minh bất đẳng thức, giải phương trình, bất phương trình, hệ phương trình. §2. Cực trị của hàm số Dạng toán 1. Tìm cực trị của hàm số cho bởi công thức. Dạng toán 2. Tìm cực trị dựa vào bảng biến thiên, đồ thị. Dạng toán 3. Tìm m để hàm số đạt cực trị tại 1 điểm x0 cho trước. Dạng toán 4. Tìm m để hàm số, đồ thị hàm số trùng phương có cực trị thỏa mãn điều kiện. Dạng toán 5. Tìm m để hàm số, đồ thị hàm số các hàm số khác có cực trị thỏa mãn điều kiện. §3. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số Dạng toán 1. GTLN, GTNN trên đoạn [a;b]. Dạng toán 2. GTLN, GTNN trên khoảng. Dạng toán 3. Ứng dụng GTNN, GTLN trong bài toán phương trình, bất phương trình, hệ phương trình. Dạng toán 4. Bài toán ứng dụng, tối ưu, thực tế. §4. Đường tiệm cận Dạng toán 1. Bài toán xác định các đường tiệm cận của hàm số (không chứa tham số) hoặc biết BBT, đồ thị. Dạng toán 2. Bài toán xác định các đường tiệm cận của hàm số có chứa tham số. §5. Khảo sát sự biến thiên và vẽ đồ thị hàm số Dạng toán 1. Nhận dạng đồ thị, bảng biến thiên. Dạng toán 2. Biện luận số giao điểm dựa vào đồ thị, bảng biến thiên. Dạng toán 3. Sự tương giao của hai đồ thị (liên quan đến tọa độ giao điểm). Dạng toán 4. Phương trình tiếp tuyến của đồ thị hàm số. Chương 2 . Hàm số lũy thừa – Hàm số mũ và Hàm số lô-ga-rít §1. Lũy thừa Dạng toán 1. Tính giá trị của biểu thức chứa lũy thừa. Dạng toán 2. Biến đổi, rút gọn, biểu diễn các biểu thức chứa lũy thừa. §2. Hàm số lũy thừa Dạng toán 1. Tập xác định của hàm số chứa hàm lũy thừa. Dạng toán 2. Đạo hàm hàm số lũy thừa. §3. Lô-ga-rít Dạng toán 1. Tính giá trị biểu thức chứa lô-ga-rít. Dạng toán 2. Biến đổi, rút gọn, biểu diễn biểu thức chứa lô-ga-rít. Dạng toán 3. So sánh các biểu thức lô-ga-rít. §4. Hàm số mũ. Hàm số lô-ga-rít Dạng toán 1. Tập xác định của hàm số mũ, hàm số lô-ga-rít. Dạng toán 2. Tính đạo hàm hàm số mũ, hàm số lô-ga-rít. Dạng toán 3. Khảo sát sự biến thiên và vẽ đồ thị của hàm số mũ, lô-ga-rít. Dạng toán 4. Tìm giá trị lớn nhất, nhỏ nhất của biểu thức chứa hàm mũ, hàm lô-ga-rít. Dạng toán 5. Bài toán thực tế. §5. Phương trình mũ và phương trình lô-ga-rít Dạng toán 1. Phương trình cơ bản. Dạng toán 2. Phương pháp đưa về cùng cơ số. Dạng toán 3. Phương pháp đặt ẩn phụ. Dạng toán 4. Phương pháp hàm số, đánh giá. Dạng toán 5. Bài toán thực tế. §6. Bất phương trình mũ và lô-ga-rít Dạng toán 1. Bất phương trình cơ bản. Dạng toán 2. Phương pháp đưa về cùng cơ số. Dạng toán 3. Phương pháp đặt ẩn phụ. [ads] Chương 3 . Nguyên hàm, tích phân và ứng dụng §1. Nguyên hàm Dạng toán 1. Định nghĩa, tính chất và nguyên hàm cơ bản. Dạng toán 2. Phương pháp đổi biến số. Dạng toán 3. Phương pháp nguyên hàm từng phần. §2. Tích phân Dạng toán 1. Định nghĩa, tính chất và tích phân cơ bản. Dạng toán 2. Phương pháp đổi biến số. Dạng toán 3. Phương pháp tích phân từng phần. Dạng toán 4. Tích phân của hàm ẩn. Tích phân đặc biệt. §3. Ứng dụng của tích phân Dạng toán 1. Diện tích hình phẳng được giới hạn bởi các đồ thị. Dạng toán 2. Bài toán thực tế sử dụng diện tích hình phẳng. Dạng toán 3. Thể tích giới hạn bởi các đồ thị (tròn xoay). Dạng toán 4. Thể tích tính theo mặt cắt S(x). Dạng toán 5. Bài toán thực tế và ứng dụng thể tích. Dạng toán 6. Ứng dụng tích phân vào bài toán liên môn (lý, hóa, sinh, kinh tế). Chương 4 . Số phức §1. Khái niệm số phức Dạng toán 1. Xác định các yếu tố cơ bản của số phức. Dạng toán 2. Biểu diễn hình học cơ bản của số phức. Dạng toán 3. Câu hỏi lý thuyết. §2. Phép cộng, trừ và nhân số phức Dạng toán 1. Thực hiện phép tính. Dạng toán 2. Xác định các yếu tố cơ bản của số phức qua các phép toán. Dạng toán 3. Bài toán tập hợp điểm. §3. Phép chia số phức Dạng toán 1. Bài toán quy về giải phương trình, hệ phương trình nghiệm thực. Dạng toán 2. Bài toán tập hợp điểm. §4. Phương trình bậc hai hệ số thực Dạng toán 1. Giải phương trình. Tính toán biểu thức nghiệm. Dạng toán 2. Phương trình quy về bậc hai. §5. Cực trị Dạng toán. Phương pháp hình học. HÌNH HỌC 12 Chương 1 . Khối đa diện §1. Khái niệm về khối đa diện Dạng toán 1. Nhận diện hình đa diện, khối đa diện. Dạng toán 2. Xác định số đỉnh, cạnh, mặt bên của một khối đa diện. Dạng toán 3. Phép biến hình trong không gian. §2. Khối đa diện lồi và khối đa diện đều Dạng toán. Nhận diện loại đa diện đều. §3. Khái niệm về thể tích của khối đa diện Dạng toán 1. Diện tích xung quanh, diện tích toàn phần của khối đa diện. Dạng toán 2. Tính thể tích các khối đa diện. Dạng toán 3. Các bài toán khác (góc, khoảng cách …) liên quan đến thể tích khối đa diện. Chương 2 . Mặt nón, mặt trụ, mặt cầu §1. Khái niệm về mặt tròn xoay Dạng toán 1. Thể tích khối nón, khối trụ. Dạng toán 2. Diện tích xung quanh, diện tích toàn phần, độ dài đường sinh, chiều cao, bán kính đáy, thiết diện. Dạng toán 3. Bài toán thực tế về khối nón, khối trụ. §2. Mặt cầu Dạng toán 1. Bài toán sử dụng định nghĩa, tính chất, vị trí tương đối. Dạng toán 2. Khối cầu ngoại tiếp khối đa diện. Dạng toán 3. Bài toán tổng hợp về khối nón, khối trụ, khối cầu. Chương 3 . Phương pháp tọa độ trong không gian §1. Hệ tọa độ trong không gian Dạng toán 1. Tìm tọa độ điểm, véc-tơ liên quan đến hệ trục Oxyz. Dạng toán 2. Tích vô hướng và ứng dụng. Dạng toán 3. Phương trình mặt cầu (xác định tâm, bán kính, viết phương trình mặt cầu đơn giản, vị trí tương đối hai mặt cầu, điểm đến mặt cầu, đơn giản). Dạng toán 4. Các bài toán cực trị. §2. Phương trình mặt phẳng Dạng toán 1. Tích có hướng và ứng dụng. Dạng toán 2. Xác định VTPT. Dạng toán 3. Viết phương trình mặt phẳng. Dạng toán 4. Tìm tọa độ điểm liên quan đến mặt phẳng. Dạng toán 5. Khoảng cách. Dạng toán 6. Vị trí tương đối giữa hai mặt phẳng, giữa mặt cầu và mặt phẳng. §3. Phương trình đường thẳng trong không gian Dạng toán 1. Xác định VTCP. Dạng toán 2. Viết phương trình đường thẳng. Dạng toán 3. Tìm tọa độ điểm liên quan đến đường thẳng. Dạng toán 4. Góc. Dạng toán 5. Khoảng cách. Dạng toán 6. Vị trí tương đối giữa hai đường thẳng, giữa đường thẳng và mặt phẳng. Dạng toán 7. Bài toán liên quan giữa đường thẳng – mặt phẳng – mặt cầu.

Nguồn: toanmath.com

Đọc Sách

Tài liệu ôn thi THPT Quốc gia môn Toán - Hồ Xuân Trọng
Tài liệu gồm 335 trang, được tổng hợp và biên soạn bởi thầy giáo Hồ Xuân Trọng, tuyển chọn câu hỏi và bài tập trắc nghiệm các chủ đề quan trọng ôn thi THPT Quốc gia môn Toán. PHẦN I GIẢI TÍCH 12. CHƯƠNG 1 Khảo sát hàm số và ứng dụng. 1 Sự đồng biến, nghịch biến của hàm số. 2 Tìm điều kiện của tham số để hàm số đơn điệu trên một khoảng cho trước. 3 Tính đơn điệu của hàm hợp. 4 Cực trị của hàm số (I). 5 Cực trị của hàm số (II). 6 Tìm cực trị của hàm số hợp. 7 Giá trị lớn nhất và giá trị nhỏ nhất của hàm số. 8 Giá trị lớn nhất, nhỏ nhất của hàm số y = |f(x)|. 9 Tiệm cận của đồ thị hàm số. 10 Nhận dạng hàm số từ đồ thị, bảng biến thiên. 11 Phát hiện tính chất của hàm số dựa và đồ thị của hàm số, đồ thị của đạo hàm. 12 Sử dụng sự tương giao để xét phương trình (I). 13 Sử dụng sự tương giao để xét phương trình (II. CHƯƠNG 2 Hàm số lũy thừa, hàm số mũ và hàm số lôgarit. 1 Lôgarit (I). 2 Lôgarit (II). 3 Lôgarit (III). 4 Phương trình, bất phương trình logarit. 5 Phương trình, bất phương trình mũ và logarit. 6 Phương trình lôgarit có chứa tham số. 7 Ứng dụng phương pháp hàm số giải phương trình mũ và logarit. 8 Công thức lãi kép. CHƯƠNG 3 Nguyên hàm, tích phân và ứng dụng. 1 Nguyên hàm cơ bản (I). 2 Nguyên hàm cơ bản (II). 3 Nguyên hàm từng phần. 4 Tính chất của tích phân. 5 Tích phân cơ bản. 6 Tính tích phân bằng phương đổi biến. 7 Ứng dụng của tích phân. CHƯƠNG 4 Số phức. 1 Khái niệm số phức và các phép toán. 2 Các phép toán. 3 Biểu diễn hình học của số phức. [ads] PHẦN II HÌNH HỌC 12. CHƯƠNG 5 Thể tích khối đa diện. 1 Tính thể tích khối chóp. 2 Thể tích khối lăng trụ đứng (I). 3 Thể tích khối lăng trụ đứng (II). CHƯƠNG 6 Mặt nón – Mặt trụ – Mặt cầu. 1 Hình nón và khối nón (I). 2 Hình nón và khối nón (II). 3 Khối trụ. CHƯƠNG 7 Phương pháp tọa độ trong không gian. 1 Tọa độ của điểm, tọa độ của véc-tơ. 2 Phương trình mặt phẳng. 3 Phương trình đường thẳng (I). 4 Phương trình đường thẳng (II). 5 Phương trình mặt phẳng liên quan đến đường thẳng. 6 Bài toán tìm hình chiếu. 7 Phương trình mặt cầu (I). 8 Phương trình mặt cầu (II). PHẦN III ĐẠI SỐ & GIẢI TÍCH 11. CHƯƠNG 8 Tổ hợp – Xác suất – Công thức khai triển nhị thức Newton. 1 Các quy tắc đếm. 2 Xác suất. CHƯƠNG 9 Dãy số – Cấp số cộng và cấp số nhân. 1 Cấp số cộng, cấp số nhân. PHẦN IV HÌNH HỌC 11. 1 Góc. 2 Khoảng cách.
Sử dụng chủ yếu suy luận trong giải toán trắc nghiệm - Trần Tuấn Anh
Tài liệu gồm 24 trang, được biên soạn bởi thầy Trần Tuấn Anh, hướng dẫn sử dụng chủ yếu suy luận trong giải toán trắc nghiệm, giúp học sinh ôn thi tốt nghiệp Trung học Phổ thông Quốc gia môn Toán. Một số bài toán có dạng đặc biệt được giải nhanh nhờ những suy luận toán học, mà nếu chúng ta giải bằng cách thông thường thì cho ta lời giải khá dài, do đó mất thời gian. Đây thường là những bài toán ở mức vận dụng và vận dụng cao, do đó chúng ta cần chuẩn bị kiến thức sâu rộng để linh hoạt trong việc giải quyết bài toán đó, không bị dập theo một khuôn mẫu khô cứng, thiếu sáng tạo. [ads] Các phương pháp được trình bày ở trên một cách độc lập nhằm đem lại cho độc giả cái nhìn chung, tổng quát nhất về mỗi phương pháp. Thế nhưng, việc phân định rạch ròi các phương pháp là rất khó khăn, có nhiều bài toán chúng ta phải kết hợp một số phương pháp để chọn được đúng đáp án. Ở trong phương pháp này lại có dấu vết nào đó của phương pháp kia, khiến chúng ta băn khoăn trong việc chọn lựa phương pháp. Vì thế, trong quá trình giải toán, chúng ta cần linh hoạt vận dụng các phương pháp theo hướng tổng lực để xử lý bài toán trắc nghiệm. Tận dụng mặt mạnh, hữu dụng của mỗi phương pháp đối với các dạng bài toán trắc nghiệm khác nhau. Không chỉ tư duy trên nền tảng một phương pháp.
Tóm tắt kiến thức Toán ôn thi THPT Quốc gia - Hoàng Xuân Nhàn
Tài liệu gồm 41 trang, được biên soạn bởi thầy giáo Hoàng Xuân Nhàn, tóm tắt kiến thức môn Toán THPT (10 – 11 – 12), giúp học sinh ôn thi THPT Quốc gia môn Toán. Chủ đề 1. Công thức lượng giác. Chủ đề 2. Phương trình lượng giác. Chủ đề 3. Tổ hợp – xác suất. Chủ đề 4. Khai triển nhị thức Newton. Chủ đề 5. Cấp số cộng – cấp số nhân. Chủ đề 6. Giới hạn dãy số – hàm số. Chủ đề 7. Đạo hàm. Chủ đề 8. Khảo sát hàm số và bài toán liên quan. Chủ đề 9. Lũy thừa – mũ và logarit. Chủ đề 10. Nguyên hàm – tích phân. Chủ đề 11. Số phức và các yếu tố liên quan. Chủ đề 12. Khối đa diện và thể tích của chúng. Chủ đề 13. Hình học giải tích trong không gian. Chủ đề 14. Gắn tọa độ vào hình học không gian. Xem thêm : Bảng tóm tắt công thức Toán 12
Hệ thống kiến thức và phương pháp giải Toán THPT - Võ Công Trường
Tài liệu gồm 68 trang, được biên soạn bởi thầy Võ Công Trường, hệ thống kiến thức và phương pháp giải Toán THPT, giúp học sinh ôn thi tốt nghiệp THPT môn Toán. Mục lục tài liệu hệ thống kiến thức và phương pháp giải Toán THPT – Võ Công Trường: Chủ đề 1 : Khảo sát hàm số và các bài toán liên quan. 1. Bảng đạo hàm. 2. Sự biến thiên. 3. Cực trị. 4. Giá trị lớn nhất – giá trị nhỏ nhất. 5. Đường tiệm cận. 6. Khảo sát và vẽ đồ thị của hàm số. 7. Tiếp tuyến. 8. Sự tương giao (dấu hiệu nhận biết: trong đề có từ: cắt, tiếp xúc, giao điểm hay điểm chung). 9. Ứng dụng sự tương giao. 10. Phép suy đồ thị. Chủ đề 2 : Lũy thừa, mũ và lôgarít. 1. Công thức. 2. Hàm số mũ và hàm số lôgarít. 3. Phương trình, bất phương trình mũ, lôgarit. 4. Ứng dụng hàm mũ – lôgarit vào bài toán thực tế. Chủ đề 3 : Nguyên hàm, tích phân và ứng dụng. 1. Nguyên hàm. 2. Tích phân. 3. Ứng dụng tích phân để tính diện tích, thể tích. Chủ đề 4 : Số phức. 1. Công thức, phép toán. 2. Phương trình bậc hai. 3. Tìm số phức thỏa điều kiện cho trước. 4. Tìm tập hợp điểm biểu diễn số phức. Chủ đề 5 : Khối đa diện. 1. Thể tích khối đa diện. 2. Ứng dụng thể tích. 3. Một số hình đa diện thường gặp. 4. Công thức đặc biệt tính thể tích khối tứ diện ABCD. Chủ đề 6 : Khối tròn xoay. 1. Thể tích, diện tích hình tròn xoay. 2. Sự tương giao giữa hình tròn xoay và hình đa diện. Chủ đề 7 : Phương pháp tọa độ trong không gian. 1. Vectơ và tọa độ. 2. Mặt phẳng. 3. Đường thẳng. 4. Mặt cầu. 5. Vị trí tương đối. 6. Khoảng cách. 7. Góc. 8. Hình chiếu, điểm đối xứng. 9. Tìm tọa độ điểm thỏa điều kiện lớn nhất, nhỏ nhất. 10. Tọa độ các tâm của tam giác. [ads] Phụ lục Phương trình, bất phương trình và hệ phương trình. 1. Nhị thức bậc nhất. 2. Tam thức bậc hai, phương trình bậc hai. 3. Phương trình bậc ba. 4. Phương trình bậc bốn trùng phương. 5. Phương trình chứa căn thức. 6. Bất phương trình chứa căn thức. 7. Phương trình, bất phương trình chứa dấu giá trị tuyệt đối. 8. Hệ phương trình. Bất đẳng thức. Lượng giác. Tổ hợp và xác suất. Cấp số cộng – cấp số nhân. Giới hạn. Hình học (tổng hợp) phẳng. 1. Hệ thức lượng trong tam giác. 2. Hệ thức lượng trong tứ giác. 3. Hệ thức lượng trong đường tròn. 4. Tâm của tam giác. Hình học tọa độ trong mặt phẳng. 1. Tọa độ. 2. Phương trình đường thẳng. 3. Phương trình đường tròn. 4. Elíp. 5. Công thức tính diện tích tam giác, hình bình hành bằng tọa độ. Phép biến hình trong mặt phẳng. Hình học không gian (tổng hợp) lớp 11. 1. Quan hệ song song. Dạng 1: Chứng minh quan hệ song song. Dạng 2: Tìm giao tuyến của 2 mặt phẳng. Dạng 3: Tìm giao điểm của đường thẳng và mặt phẳng. Dạng 4: Tìm thiết diện của hình chóp, lăng trụ được cắt bởi mặt phẳng. 2. Quan hệ vuông góc. Dạng 1: Chứng minh quan hệ vuông góc. Dạng 2: Tìm hình chiếu của điểm lên mặt phẳng. Dạng 3: Tính góc. Dạng 4: Tính khoảng cách. Sơ đồ tư duy Toán THPT.