Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phân dạng câu hỏi và bài tập trong đề thi chính thức THPT Quốc gia 2018 môn Toán

Tài liệu gồm 71 trang phân dạng câu hỏi và bài tập trong đề thi chính thức THPT Quốc gia 2018 môn Toán theo các đơn vị kiến thức tương ứng với các nội dung bài học. Tài liệu được biên soạn theo hình thức LaTex, các câu hỏi và bài tập trong tài liệu đều được phân tích và giải chi tiết. Tài liệu thích hợp cho các em học sinh khối 12 dùng để rèn luyện chuẩn bị cho kỳ thi THPT Quốc gia năm 2019 môn Toán. Nội dung tài liệu phân dạng câu hỏi và bài tập trong đề thi chính thức THPT Quốc gia 2018 môn Toán : ĐẠI SỐ & GIẢI TÍCH 11 Chương 2 . Tổ hợp. Xác suất. Nhị thức Newton §1. Hoán vị-chỉnh hợp-tổ hợp Dạng toán. Bài toán chỉ sử dụng P hoặc C hoặc A. §2. Nhị thức Newton Dạng toán. Tìm hệ số, số hạng trong khai triển nhị thức Newton. §3. Xác suất của biến cố Dạng toán 1. Tính xác suất bằng định nghĩa. Dạng toán 2. Tính xác suất bằng công thức nhân. Chương 3 . Dãy số – Cấp số cộng- Cấp số nhân §1. Dãy số Dạng toán. Tìm hạng tử trong dãy số. Chương 4 . Giới hạn §1. Giới hạn của dãy số Dạng toán. Dùng phương pháp đặt thừa số. §2. Giới hạn của hàm số Dạng toán. Dạng vô cùng chia vô cùng, số chia vô cùng. HÌNH HỌC 11 Chương 3 . Véc-tơ trong không gian. Quan hệ vuông góc trong không gian §1. Hai đường thẳng vuông góc Dạng toán. Xác định góc giữa hai đường thẳng (dùng định nghĩa). §2. Đường thẳng vuông góc với mặt phẳng Dạng toán 1. Xác định quan hệ vuông góc giữa đường thẳng và mặt phẳng, đường thẳng và đường thẳng. Dạng toán 2. Xác định góc giữa hai mặt phẳng, đường thẳng và mặt phẳng. §3. Hai mặt phẳng vuông góc Dạng toán. Xác định góc giữa hai mặt phẳng, đường và mặt. §4. Khoảng cách Dạng toán 1. Tính độ dài đoạn thẳng và khoảng cách từ một điểm đến một đường thẳng. Dạng toán 2. Khoảng cách từ một điểm đến một mặt phẳng. Dạng toán 3. Khoảng cách giữa hai đường thẳng chéo nhau. GIẢI TÍCH 12 Chương 1 . Ứng dụng đạo hàm để khảo sát hàm số §1. Sự đồng biến và nghịch biến của hàm số Dạng toán 1. Xét tính đơn điệu của hàm số cho bởi công thức. Dạng toán 2. Xét tính đơn điệu dựa vào bảng biến thiên, đồ thị. Dạng toán 3. Tìm tham số m để hàm số đơn điệu. Dạng toán 4. Ứng dụng tính đơn điệu để chứng minh bất đẳng thức, giải phương trình, bất phương trình, hệ phương trình. §2. Cực trị của hàm số Dạng toán 1. Tìm cực trị của hàm số cho bởi công thức. Dạng toán 2. Tìm cực trị dựa vào bảng biến thiên, đồ thị. Dạng toán 3. Tìm m để hàm số đạt cực trị tại 1 điểm x0 cho trước. Dạng toán 4. Tìm m để hàm số, đồ thị hàm số trùng phương có cực trị thỏa mãn điều kiện. Dạng toán 5. Tìm m để hàm số, đồ thị hàm số các hàm số khác có cực trị thỏa mãn điều kiện. §3. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số Dạng toán 1. GTLN, GTNN trên đoạn [a;b]. Dạng toán 2. GTLN, GTNN trên khoảng. Dạng toán 3. Ứng dụng GTNN, GTLN trong bài toán phương trình, bất phương trình, hệ phương trình. Dạng toán 4. Bài toán ứng dụng, tối ưu, thực tế. §4. Đường tiệm cận Dạng toán 1. Bài toán xác định các đường tiệm cận của hàm số (không chứa tham số) hoặc biết BBT, đồ thị. Dạng toán 2. Bài toán xác định các đường tiệm cận của hàm số có chứa tham số. §5. Khảo sát sự biến thiên và vẽ đồ thị hàm số Dạng toán 1. Nhận dạng đồ thị, bảng biến thiên. Dạng toán 2. Biện luận số giao điểm dựa vào đồ thị, bảng biến thiên. Dạng toán 3. Sự tương giao của hai đồ thị (liên quan đến tọa độ giao điểm). Dạng toán 4. Phương trình tiếp tuyến của đồ thị hàm số. Chương 2 . Hàm số lũy thừa – Hàm số mũ và Hàm số lô-ga-rít §1. Lũy thừa Dạng toán 1. Tính giá trị của biểu thức chứa lũy thừa. Dạng toán 2. Biến đổi, rút gọn, biểu diễn các biểu thức chứa lũy thừa. §2. Hàm số lũy thừa Dạng toán 1. Tập xác định của hàm số chứa hàm lũy thừa. Dạng toán 2. Đạo hàm hàm số lũy thừa. §3. Lô-ga-rít Dạng toán 1. Tính giá trị biểu thức chứa lô-ga-rít. Dạng toán 2. Biến đổi, rút gọn, biểu diễn biểu thức chứa lô-ga-rít. Dạng toán 3. So sánh các biểu thức lô-ga-rít. §4. Hàm số mũ. Hàm số lô-ga-rít Dạng toán 1. Tập xác định của hàm số mũ, hàm số lô-ga-rít. Dạng toán 2. Tính đạo hàm hàm số mũ, hàm số lô-ga-rít. Dạng toán 3. Khảo sát sự biến thiên và vẽ đồ thị của hàm số mũ, lô-ga-rít. Dạng toán 4. Tìm giá trị lớn nhất, nhỏ nhất của biểu thức chứa hàm mũ, hàm lô-ga-rít. Dạng toán 5. Bài toán thực tế. §5. Phương trình mũ và phương trình lô-ga-rít Dạng toán 1. Phương trình cơ bản. Dạng toán 2. Phương pháp đưa về cùng cơ số. Dạng toán 3. Phương pháp đặt ẩn phụ. Dạng toán 4. Phương pháp hàm số, đánh giá. Dạng toán 5. Bài toán thực tế. §6. Bất phương trình mũ và lô-ga-rít Dạng toán 1. Bất phương trình cơ bản. Dạng toán 2. Phương pháp đưa về cùng cơ số. Dạng toán 3. Phương pháp đặt ẩn phụ. [ads] Chương 3 . Nguyên hàm, tích phân và ứng dụng §1. Nguyên hàm Dạng toán 1. Định nghĩa, tính chất và nguyên hàm cơ bản. Dạng toán 2. Phương pháp đổi biến số. Dạng toán 3. Phương pháp nguyên hàm từng phần. §2. Tích phân Dạng toán 1. Định nghĩa, tính chất và tích phân cơ bản. Dạng toán 2. Phương pháp đổi biến số. Dạng toán 3. Phương pháp tích phân từng phần. Dạng toán 4. Tích phân của hàm ẩn. Tích phân đặc biệt. §3. Ứng dụng của tích phân Dạng toán 1. Diện tích hình phẳng được giới hạn bởi các đồ thị. Dạng toán 2. Bài toán thực tế sử dụng diện tích hình phẳng. Dạng toán 3. Thể tích giới hạn bởi các đồ thị (tròn xoay). Dạng toán 4. Thể tích tính theo mặt cắt S(x). Dạng toán 5. Bài toán thực tế và ứng dụng thể tích. Dạng toán 6. Ứng dụng tích phân vào bài toán liên môn (lý, hóa, sinh, kinh tế). Chương 4 . Số phức §1. Khái niệm số phức Dạng toán 1. Xác định các yếu tố cơ bản của số phức. Dạng toán 2. Biểu diễn hình học cơ bản của số phức. Dạng toán 3. Câu hỏi lý thuyết. §2. Phép cộng, trừ và nhân số phức Dạng toán 1. Thực hiện phép tính. Dạng toán 2. Xác định các yếu tố cơ bản của số phức qua các phép toán. Dạng toán 3. Bài toán tập hợp điểm. §3. Phép chia số phức Dạng toán 1. Bài toán quy về giải phương trình, hệ phương trình nghiệm thực. Dạng toán 2. Bài toán tập hợp điểm. §4. Phương trình bậc hai hệ số thực Dạng toán 1. Giải phương trình. Tính toán biểu thức nghiệm. Dạng toán 2. Phương trình quy về bậc hai. §5. Cực trị Dạng toán. Phương pháp hình học. HÌNH HỌC 12 Chương 1 . Khối đa diện §1. Khái niệm về khối đa diện Dạng toán 1. Nhận diện hình đa diện, khối đa diện. Dạng toán 2. Xác định số đỉnh, cạnh, mặt bên của một khối đa diện. Dạng toán 3. Phép biến hình trong không gian. §2. Khối đa diện lồi và khối đa diện đều Dạng toán. Nhận diện loại đa diện đều. §3. Khái niệm về thể tích của khối đa diện Dạng toán 1. Diện tích xung quanh, diện tích toàn phần của khối đa diện. Dạng toán 2. Tính thể tích các khối đa diện. Dạng toán 3. Các bài toán khác (góc, khoảng cách …) liên quan đến thể tích khối đa diện. Chương 2 . Mặt nón, mặt trụ, mặt cầu §1. Khái niệm về mặt tròn xoay Dạng toán 1. Thể tích khối nón, khối trụ. Dạng toán 2. Diện tích xung quanh, diện tích toàn phần, độ dài đường sinh, chiều cao, bán kính đáy, thiết diện. Dạng toán 3. Bài toán thực tế về khối nón, khối trụ. §2. Mặt cầu Dạng toán 1. Bài toán sử dụng định nghĩa, tính chất, vị trí tương đối. Dạng toán 2. Khối cầu ngoại tiếp khối đa diện. Dạng toán 3. Bài toán tổng hợp về khối nón, khối trụ, khối cầu. Chương 3 . Phương pháp tọa độ trong không gian §1. Hệ tọa độ trong không gian Dạng toán 1. Tìm tọa độ điểm, véc-tơ liên quan đến hệ trục Oxyz. Dạng toán 2. Tích vô hướng và ứng dụng. Dạng toán 3. Phương trình mặt cầu (xác định tâm, bán kính, viết phương trình mặt cầu đơn giản, vị trí tương đối hai mặt cầu, điểm đến mặt cầu, đơn giản). Dạng toán 4. Các bài toán cực trị. §2. Phương trình mặt phẳng Dạng toán 1. Tích có hướng và ứng dụng. Dạng toán 2. Xác định VTPT. Dạng toán 3. Viết phương trình mặt phẳng. Dạng toán 4. Tìm tọa độ điểm liên quan đến mặt phẳng. Dạng toán 5. Khoảng cách. Dạng toán 6. Vị trí tương đối giữa hai mặt phẳng, giữa mặt cầu và mặt phẳng. §3. Phương trình đường thẳng trong không gian Dạng toán 1. Xác định VTCP. Dạng toán 2. Viết phương trình đường thẳng. Dạng toán 3. Tìm tọa độ điểm liên quan đến đường thẳng. Dạng toán 4. Góc. Dạng toán 5. Khoảng cách. Dạng toán 6. Vị trí tương đối giữa hai đường thẳng, giữa đường thẳng và mặt phẳng. Dạng toán 7. Bài toán liên quan giữa đường thẳng – mặt phẳng – mặt cầu.

Nguồn: toanmath.com

Đọc Sách

Công phá đề thi THPT Quốc gia 2018 môn Toán
Nội dung Công phá đề thi THPT Quốc gia 2018 môn Toán Bản PDF - Nội dung bài viết Cong pha de thi THPT Quoc gia 2018 mon Toan - 24 de thi thử THPTQG môn Toán năm 2018 Cong pha de thi THPT Quoc gia 2018 mon Toan - 24 de thi thử THPTQG môn Toán năm 2018 Cuốn sách Công phá đề thi THPT Quốc gia 2018 môn Toán bao gồm 470 trang được tuyển chọn cẩn thận, với 24 đề thi thử THPTQG môn Toán năm 2018 kèm theo lời giải chi tiết. Các đề thi được biên soạn một cách cẩn thận để đảm bảo rằng chúng bám sát đề thi thật của kỳ thi quan trọng này.
Bộ đề ôn tập thi THPTQG 2018 Hình học mục tiêu 7 điểm Trần Thanh Yên
Nội dung Bộ đề ôn tập thi THPTQG 2018 Hình học mục tiêu 7 điểm Trần Thanh Yên Bản PDF - Nội dung bài viết Bộ đề ôn tập thi THPTQG 2018 Hình học mục tiêu 7 điểm của Thầy Trần Thanh Yên Bộ đề ôn tập thi THPTQG 2018 Hình học mục tiêu 7 điểm của Thầy Trần Thanh Yên Thầy Trần Thanh Yên đã biên soạn tài liệu Bộ đề ôn tập thi THPTQG 2018 phần Hình học – mục tiêu 7 điểm nhằm hướng đến đa số đối tượng học sinh. Đây là cuốn sách được chọn lọc kỹ lưỡng với một số lượng lớn câu trắc nghiệm để rèn luyện cho kì thi sắp tới. Cuốn sách này được thiết kế để giúp học sinh đạt mục tiêu 7 điểm trong kì thi THPTQG. Các bài ôn tập trong sách được tổ chức theo 3 phần chính: 1. Phần Thể tích khối đa diện: Gồm 50 đề ôn với tổng cộng 750 câu hỏi, bao gồm kiến thức từ Chương 2 Hình học 11 và Chương 1 Hình học 12. 2. Phần Khối tròn xoay: Bao gồm 50 đề ôn với 500 câu hỏi, tập trung vào kiến thức thuộc Chương 2 Hình học 12. 3. Phần Không gian tọa độ Oxyz: Gồm 50 đề ôn với tổng cộng 1000 câu hỏi, hướng đến kiến thức từ Chương 3 Hình học 12. Tài liệu tổng cộng có 2250 câu hỏi trắc nghiệm và đều có đáp án ở cuối cuốn sách. Để đạt kết quả cao trong kì thi, học sinh cần ôn tập kỹ lưỡng các câu hỏi trong cuốn sách này và phân chia thời gian làm bài một cách hiệu quả.
Bộ câu hỏi trắc nghiệm ôn tập kiến thức cơ bản THPT Quốc gia 2018 môn Toán
Nội dung Bộ câu hỏi trắc nghiệm ôn tập kiến thức cơ bản THPT Quốc gia 2018 môn Toán Bản PDF - Nội dung bài viết Bộ câu hỏi trắc nghiệm ôn tập kiến thức cơ bản THPT Quốc gia 2018 môn Toán Bộ câu hỏi trắc nghiệm ôn tập kiến thức cơ bản THPT Quốc gia 2018 môn Toán Cuốn sách Bộ câu hỏi trắc nghiệm Ôn tập kiến thức cơ bản THPT Quốc gia môn Toán lớp 2018 (tác giả Trần Thanh Yên) là tài liệu ôn luyện chất lượng, được biên soạn theo chuẩn nội dung kiến thức của kì thi năm 2018. Cuốn sách này phù hợp cho đa số đối tượng học sinh, đặc biệt là học sinh trung bình ôn luyện kiến thức căn bản để đạt được điểm số cao. Trong quá trình biên soạn, tác giả đã sưu tầm các câu hỏi từ nhiều tài liệu tham khảo của các tác giả uy tín trên cả nước, nhằm giúp các em học sinh nắm vững những kiến thức cần thiết và rèn luyện kỹ năng làm bài trắc nghiệm môn Toán hiệu quả. Cuốn sách không dành cho mục đích thương mại mà được miễn phí dành tặng cho các em học sinh. Trong cuốn sách, các chuyên đề chính được trình bày cụ thể và dễ hiểu như: Hàm số, Logarit, Nguyên hàm - Tích phân, Số phức, Thể tích - Nón - Trụ - Cầu, Không gian Oxyz, Chương trình lớp 11. Mỗi chuyên đề được trình bày cặn kẽ, đi sâu vào từng khái niệm và kèm theo các bài tập ôn tập để học sinh có thể tự luyện tập và kiểm tra kiến thức của mình. Chúc các em học sinh ôn luyện kiến thức cơ bản thật tốt để chuẩn bị cho kỳ thi quan trọng. Tác giả mong nhận được ý kiến đóng góp từ thầy cô và các em học sinh để cuốn sách ngày càng hoàn thiện hơn.
Casio luyện đề 2018 ver 1.0 Nguyễn Thế Lực
Nội dung Casio luyện đề 2018 ver 1.0 Nguyễn Thế Lực Bản PDF - Nội dung bài viết Review of Casio luyện đề 2018 ver 1.0 by Nguyễn Thế Lực Review of Casio luyện đề 2018 ver 1.0 by Nguyễn Thế Lực The book "Casio luyện đề 2018 ver 1.0" is a comprehensive study guide compiled by the author Nguyễn Thế Lực. The book consists of 287 pages and includes a selection of 8 exercises to help students prepare for their exams. The content covers a wide range of topics and provides detailed explanations to help students understand the material better. Nguyễn Thế Lực's book is a valuable resource for students looking to improve their knowledge and skills in various subjects. The exercises are thoughtfully curated to challenge students and help them build their problem-solving abilities. The book is well-organized and easy to follow, making it a convenient study companion for students of all levels. In conclusion, "Casio luyện đề 2018 ver 1.0" is a must-have study guide for students preparing for exams. Nguyễn Thế Lực's expertise and attention to detail shine through in this book, making it an effective tool for academic success.