Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phân dạng câu hỏi và bài tập trong đề thi chính thức THPT Quốc gia 2018 môn Toán

Tài liệu gồm 71 trang phân dạng câu hỏi và bài tập trong đề thi chính thức THPT Quốc gia 2018 môn Toán theo các đơn vị kiến thức tương ứng với các nội dung bài học. Tài liệu được biên soạn theo hình thức LaTex, các câu hỏi và bài tập trong tài liệu đều được phân tích và giải chi tiết. Tài liệu thích hợp cho các em học sinh khối 12 dùng để rèn luyện chuẩn bị cho kỳ thi THPT Quốc gia năm 2019 môn Toán. Nội dung tài liệu phân dạng câu hỏi và bài tập trong đề thi chính thức THPT Quốc gia 2018 môn Toán : ĐẠI SỐ & GIẢI TÍCH 11 Chương 2 . Tổ hợp. Xác suất. Nhị thức Newton §1. Hoán vị-chỉnh hợp-tổ hợp Dạng toán. Bài toán chỉ sử dụng P hoặc C hoặc A. §2. Nhị thức Newton Dạng toán. Tìm hệ số, số hạng trong khai triển nhị thức Newton. §3. Xác suất của biến cố Dạng toán 1. Tính xác suất bằng định nghĩa. Dạng toán 2. Tính xác suất bằng công thức nhân. Chương 3 . Dãy số – Cấp số cộng- Cấp số nhân §1. Dãy số Dạng toán. Tìm hạng tử trong dãy số. Chương 4 . Giới hạn §1. Giới hạn của dãy số Dạng toán. Dùng phương pháp đặt thừa số. §2. Giới hạn của hàm số Dạng toán. Dạng vô cùng chia vô cùng, số chia vô cùng. HÌNH HỌC 11 Chương 3 . Véc-tơ trong không gian. Quan hệ vuông góc trong không gian §1. Hai đường thẳng vuông góc Dạng toán. Xác định góc giữa hai đường thẳng (dùng định nghĩa). §2. Đường thẳng vuông góc với mặt phẳng Dạng toán 1. Xác định quan hệ vuông góc giữa đường thẳng và mặt phẳng, đường thẳng và đường thẳng. Dạng toán 2. Xác định góc giữa hai mặt phẳng, đường thẳng và mặt phẳng. §3. Hai mặt phẳng vuông góc Dạng toán. Xác định góc giữa hai mặt phẳng, đường và mặt. §4. Khoảng cách Dạng toán 1. Tính độ dài đoạn thẳng và khoảng cách từ một điểm đến một đường thẳng. Dạng toán 2. Khoảng cách từ một điểm đến một mặt phẳng. Dạng toán 3. Khoảng cách giữa hai đường thẳng chéo nhau. GIẢI TÍCH 12 Chương 1 . Ứng dụng đạo hàm để khảo sát hàm số §1. Sự đồng biến và nghịch biến của hàm số Dạng toán 1. Xét tính đơn điệu của hàm số cho bởi công thức. Dạng toán 2. Xét tính đơn điệu dựa vào bảng biến thiên, đồ thị. Dạng toán 3. Tìm tham số m để hàm số đơn điệu. Dạng toán 4. Ứng dụng tính đơn điệu để chứng minh bất đẳng thức, giải phương trình, bất phương trình, hệ phương trình. §2. Cực trị của hàm số Dạng toán 1. Tìm cực trị của hàm số cho bởi công thức. Dạng toán 2. Tìm cực trị dựa vào bảng biến thiên, đồ thị. Dạng toán 3. Tìm m để hàm số đạt cực trị tại 1 điểm x0 cho trước. Dạng toán 4. Tìm m để hàm số, đồ thị hàm số trùng phương có cực trị thỏa mãn điều kiện. Dạng toán 5. Tìm m để hàm số, đồ thị hàm số các hàm số khác có cực trị thỏa mãn điều kiện. §3. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số Dạng toán 1. GTLN, GTNN trên đoạn [a;b]. Dạng toán 2. GTLN, GTNN trên khoảng. Dạng toán 3. Ứng dụng GTNN, GTLN trong bài toán phương trình, bất phương trình, hệ phương trình. Dạng toán 4. Bài toán ứng dụng, tối ưu, thực tế. §4. Đường tiệm cận Dạng toán 1. Bài toán xác định các đường tiệm cận của hàm số (không chứa tham số) hoặc biết BBT, đồ thị. Dạng toán 2. Bài toán xác định các đường tiệm cận của hàm số có chứa tham số. §5. Khảo sát sự biến thiên và vẽ đồ thị hàm số Dạng toán 1. Nhận dạng đồ thị, bảng biến thiên. Dạng toán 2. Biện luận số giao điểm dựa vào đồ thị, bảng biến thiên. Dạng toán 3. Sự tương giao của hai đồ thị (liên quan đến tọa độ giao điểm). Dạng toán 4. Phương trình tiếp tuyến của đồ thị hàm số. Chương 2 . Hàm số lũy thừa – Hàm số mũ và Hàm số lô-ga-rít §1. Lũy thừa Dạng toán 1. Tính giá trị của biểu thức chứa lũy thừa. Dạng toán 2. Biến đổi, rút gọn, biểu diễn các biểu thức chứa lũy thừa. §2. Hàm số lũy thừa Dạng toán 1. Tập xác định của hàm số chứa hàm lũy thừa. Dạng toán 2. Đạo hàm hàm số lũy thừa. §3. Lô-ga-rít Dạng toán 1. Tính giá trị biểu thức chứa lô-ga-rít. Dạng toán 2. Biến đổi, rút gọn, biểu diễn biểu thức chứa lô-ga-rít. Dạng toán 3. So sánh các biểu thức lô-ga-rít. §4. Hàm số mũ. Hàm số lô-ga-rít Dạng toán 1. Tập xác định của hàm số mũ, hàm số lô-ga-rít. Dạng toán 2. Tính đạo hàm hàm số mũ, hàm số lô-ga-rít. Dạng toán 3. Khảo sát sự biến thiên và vẽ đồ thị của hàm số mũ, lô-ga-rít. Dạng toán 4. Tìm giá trị lớn nhất, nhỏ nhất của biểu thức chứa hàm mũ, hàm lô-ga-rít. Dạng toán 5. Bài toán thực tế. §5. Phương trình mũ và phương trình lô-ga-rít Dạng toán 1. Phương trình cơ bản. Dạng toán 2. Phương pháp đưa về cùng cơ số. Dạng toán 3. Phương pháp đặt ẩn phụ. Dạng toán 4. Phương pháp hàm số, đánh giá. Dạng toán 5. Bài toán thực tế. §6. Bất phương trình mũ và lô-ga-rít Dạng toán 1. Bất phương trình cơ bản. Dạng toán 2. Phương pháp đưa về cùng cơ số. Dạng toán 3. Phương pháp đặt ẩn phụ. [ads] Chương 3 . Nguyên hàm, tích phân và ứng dụng §1. Nguyên hàm Dạng toán 1. Định nghĩa, tính chất và nguyên hàm cơ bản. Dạng toán 2. Phương pháp đổi biến số. Dạng toán 3. Phương pháp nguyên hàm từng phần. §2. Tích phân Dạng toán 1. Định nghĩa, tính chất và tích phân cơ bản. Dạng toán 2. Phương pháp đổi biến số. Dạng toán 3. Phương pháp tích phân từng phần. Dạng toán 4. Tích phân của hàm ẩn. Tích phân đặc biệt. §3. Ứng dụng của tích phân Dạng toán 1. Diện tích hình phẳng được giới hạn bởi các đồ thị. Dạng toán 2. Bài toán thực tế sử dụng diện tích hình phẳng. Dạng toán 3. Thể tích giới hạn bởi các đồ thị (tròn xoay). Dạng toán 4. Thể tích tính theo mặt cắt S(x). Dạng toán 5. Bài toán thực tế và ứng dụng thể tích. Dạng toán 6. Ứng dụng tích phân vào bài toán liên môn (lý, hóa, sinh, kinh tế). Chương 4 . Số phức §1. Khái niệm số phức Dạng toán 1. Xác định các yếu tố cơ bản của số phức. Dạng toán 2. Biểu diễn hình học cơ bản của số phức. Dạng toán 3. Câu hỏi lý thuyết. §2. Phép cộng, trừ và nhân số phức Dạng toán 1. Thực hiện phép tính. Dạng toán 2. Xác định các yếu tố cơ bản của số phức qua các phép toán. Dạng toán 3. Bài toán tập hợp điểm. §3. Phép chia số phức Dạng toán 1. Bài toán quy về giải phương trình, hệ phương trình nghiệm thực. Dạng toán 2. Bài toán tập hợp điểm. §4. Phương trình bậc hai hệ số thực Dạng toán 1. Giải phương trình. Tính toán biểu thức nghiệm. Dạng toán 2. Phương trình quy về bậc hai. §5. Cực trị Dạng toán. Phương pháp hình học. HÌNH HỌC 12 Chương 1 . Khối đa diện §1. Khái niệm về khối đa diện Dạng toán 1. Nhận diện hình đa diện, khối đa diện. Dạng toán 2. Xác định số đỉnh, cạnh, mặt bên của một khối đa diện. Dạng toán 3. Phép biến hình trong không gian. §2. Khối đa diện lồi và khối đa diện đều Dạng toán. Nhận diện loại đa diện đều. §3. Khái niệm về thể tích của khối đa diện Dạng toán 1. Diện tích xung quanh, diện tích toàn phần của khối đa diện. Dạng toán 2. Tính thể tích các khối đa diện. Dạng toán 3. Các bài toán khác (góc, khoảng cách …) liên quan đến thể tích khối đa diện. Chương 2 . Mặt nón, mặt trụ, mặt cầu §1. Khái niệm về mặt tròn xoay Dạng toán 1. Thể tích khối nón, khối trụ. Dạng toán 2. Diện tích xung quanh, diện tích toàn phần, độ dài đường sinh, chiều cao, bán kính đáy, thiết diện. Dạng toán 3. Bài toán thực tế về khối nón, khối trụ. §2. Mặt cầu Dạng toán 1. Bài toán sử dụng định nghĩa, tính chất, vị trí tương đối. Dạng toán 2. Khối cầu ngoại tiếp khối đa diện. Dạng toán 3. Bài toán tổng hợp về khối nón, khối trụ, khối cầu. Chương 3 . Phương pháp tọa độ trong không gian §1. Hệ tọa độ trong không gian Dạng toán 1. Tìm tọa độ điểm, véc-tơ liên quan đến hệ trục Oxyz. Dạng toán 2. Tích vô hướng và ứng dụng. Dạng toán 3. Phương trình mặt cầu (xác định tâm, bán kính, viết phương trình mặt cầu đơn giản, vị trí tương đối hai mặt cầu, điểm đến mặt cầu, đơn giản). Dạng toán 4. Các bài toán cực trị. §2. Phương trình mặt phẳng Dạng toán 1. Tích có hướng và ứng dụng. Dạng toán 2. Xác định VTPT. Dạng toán 3. Viết phương trình mặt phẳng. Dạng toán 4. Tìm tọa độ điểm liên quan đến mặt phẳng. Dạng toán 5. Khoảng cách. Dạng toán 6. Vị trí tương đối giữa hai mặt phẳng, giữa mặt cầu và mặt phẳng. §3. Phương trình đường thẳng trong không gian Dạng toán 1. Xác định VTCP. Dạng toán 2. Viết phương trình đường thẳng. Dạng toán 3. Tìm tọa độ điểm liên quan đến đường thẳng. Dạng toán 4. Góc. Dạng toán 5. Khoảng cách. Dạng toán 6. Vị trí tương đối giữa hai đường thẳng, giữa đường thẳng và mặt phẳng. Dạng toán 7. Bài toán liên quan giữa đường thẳng – mặt phẳng – mặt cầu.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề Toán 11 ôn thi THPT Quốc gia - Lư Sĩ Pháp
Tài liệu gồm 96 trang tổng hợp lý thuyết và bài tập trắc nghiệm có đáp án các chuyên đề Toán 11 nhiều khả năng xuất hiện trong đề thi THPT Quốc gia môn Toán, tài liệu được biên soạn bởi thầy Lư Sĩ Pháp (Giáo viên trường THPT Tuy Phong – Bình Thuận). Nội dung của cuốn tài liệu bám sát chương trình chuẩn và chương trình nâng cao về môn Toán đã được Bộ Giáo dục và Đào tạo quy định. Các chuyên đề trong tài liệu: + Chuyên đề 1. Lượng giác + Chuyên đề 2. Tổ hợp và xác suất + Chuyên đề 3. Dãy số, cấp số cộng và cấp số nhân + Chuyên đề 4. Giới hạn + Chuyên đề 5. Phép dời hình và phép đồng dạng [ads] Mỗi chuyên đề gồm 2 phần: Phần 1. Phần lý thuyết: Phần này trình bày đầy đủ lí thuyết cần nắm cho mỗi chuyên đề. Phần 2. Phần trắc nghiệm: Tổng hợp bài tập trắc nghiệm theo các chuyên đề, đa dạng, phong phú và bám sát cấu trúc thi của Bộ.
Công phá kỹ thuật Casio - Nguyễn Ngọc Nam, Ngọc Huyền LB
giới thiệu đến bạn đọc bản PDF xem trước của cuốn sách Công phá kỹ thuật Casio – cuốn sách giúp em tự tin hơn khi học Toán lớp 10 – 11 – 12, sách gồm 496 trang được biên soạn bởi các tác giả Nguyễn Ngọc Nam và Ngọc Huyền LB. Nội dung chính trong sách Công phá kỹ thuật Casio: + Phần 1. Tổng quan về các tính năng trên máy tính cầm tay: Hệ thống lại toàn bộ tính năng, các phím chức năng một cách chi tiết, đầy đủ nhất về công dụng, cách sử dụng máy tính cầm tay, điều này khiến sách trở nên phù hợp với cả những học sinh chưa có các kỹ năng cơ bản về việc sử dụng máy tính Casio trong giải toán. [ads] + Phần 2. Các chủ đề Toán sử dụng máy tính cầm tay: Gồm 11 chủ đề được trình bày xuyên suốt từ lớp 10 đến lớp 12; gồm cả đại số, giải tích lẫn hình học, bao gồm: hàm số và các ứng dụng, hàm số lượng giác và phương trình lượng giác, tổ hợp – xác suất – nhị thức Newton, giới hạn, hàm số lũy thừa – hàm số mũ – hàm số logarit, nguyên hàm – tích phân – ứng dụng, số phức, phương trình – hệ phương trình – bất phương trình, phép biến hình trong mặt phẳng, phương pháp tọa độ trong mặt phẳng, phương pháp tọa độ trong không gian. Trong mỗi chủ đề là hệ thống các ví dụ, bài tập rèn luyện được giải chi tiết, trình bày một cách tỉ mỉ quy trình bấm máy tính kèm theo phân tích, nhận xét, lưu ý và mở rộng. + Ngoài ra, phần cuối sách cung cấp các kỹ thuật bổ trợ, công thức giải nhanh kèm ví dụ áp dụng và hướng dẫn, phân tích chi tiết.
Hướng dẫn giải một số bài toán ứng dụng thực tiễn - Trần Hoàng Long
Tài liệu gồm 71 trang tuyển chọn và giải chi tiết một số bài toán thực tế vận dụng kiến thức Toán lớp 10, 11 và 12. Việc vận dụng kiến thức toán học vào giải quyết các vấn đề thực tiễn là một vấn đề quan trọng trong dạy và học toán ở trường phổ thông. Điều này đó được thể hiện từ trong đề thi THPT quốc gia và đề thi minh họa của Bộ Giáo dục. Trong chương trình sách giáo khoa Toán hiện hành, nhất là trong chương trình Đại số và Giải tích, có nhiều chủ đề kiến thức có nhiều lợi thế trong việc lồng ghép những bài toán mang tính thực tế cao, chẳng hạn: Hệ bất phương trình bậc nhất hai ẩn, Phương trình bậc hai, Bất phương trình bậc hai (Lớp 10), Giải tích tổ hợp, Xác suất, Cấp số cộng, Cấp số nhân (lớp 11), Đạo hàm (Lớp 12) … Những chủ đề có vai trò rất quan trọng trong việc rèn luyện cho học sinh kỹ năng vận dụng kiến thức Toán học vào thực tiễn . Tuy nhiên, vì nhiều lý do ít được sự quan tâm, chú ý khai thác của người dạy và người học toán. Trong chuyên đề này, tôi cố gắng làm những công việc sau đây: + Phân loại các bài tập theo từng chủ đề kiến thức + Cố gắng sưu tầm càng nhiều càng tốt các tình huống thực tiễn từ đó nếu lên bài toán thực tế cần phải giải quyết, vận dụng kiến thức toán đă học để giải quyết vấn đề + Xây dựng hệ thống các bài toán thực tế theo từng chủ đề kiến thức. Mặc dù đă rất cố gắng nhưng do khả năng hạn chế nên chuyên đề này chắc chắn sẽ còn nhiều hạn chế, kính mong quý thầy, cô đóng góp ý kiến để tài liệu này tốt hơn ở tương lai [ads] Các chủ đề trong tài liệu : 1. Chủ đề đạo hàm: Đây là công cụ hữu hiệu trong việc tìm cực trị; tìm giá trị lớn nhất, nhỏ nhất của hàm số. Thông qua việc dạy học kiến thức này, ta có thể cho học sinh giải những bài toán thực tiễn khá hấp dẫn và mang nhiều ý nghĩa. 2. Chủ đề hàm số: Từ tình huống thực tế cần giải quyết, tiến hành thực nghiệm, thu thập các số liệu từ đó lập ra hàm số sau đó khảo sát hàm số tm ra phương án tối ưu cho vấn đề cần giải quyết. 3. Chủ đề hệ bất phương trình bậc nhất hai ẩn: Trong chủ đề này có thể khai thác được nhiều dạng toán gần gũi với đời sống thực tiễn như: Bài toán vận tải, Bài toán sản xuất đồng bộ, Bài toán thực đơn, Bài toán lập kế hoạch sản xuất trong điều kiện tài nguyên hạn chế, Bài toán vốn đầu tư nhỏ nhất, Bài toán pha trộn … 4. Chủ đề dãy số, cấp số cộng, cấp số nhân 5. Chủ đề giải tích tổ hợp, xác suất
Tiếp cận phương pháp và vận dụng cao trong trắc nghiệm bài toán thực tế
Cuốn sách Tiếp cận phương pháp và vận dụng cao trong trắc nghiệm bài toán thực tế – Trần Công Diêu, Nguyễn Văn Quang gồm 444 trang phân dạng, tuyển chọn và hướng dẫn giải các bài toán trắc nghiệm thực tế và các bài toán vận dụng cao trong các đề thi thử môn Toán. Chương 1. Bài toán vận dụng cao chuyên đề ứng dụng đạo hàm Chủ đề 1. Các bài toán thực tế ứng dụng đạo hàm để giải + Dạng 1. Một số bài toán ứng dụng về kinh doanh, sản xuất trong đời sống + Dạng 2. Một số bài toán ứng dụng về chuyển động Chủ đề 2. Tìm giá trị của tham số để hàm số đơn điệu trên miền D Chủ đề 3. Giải và biện luận phương trình, bất phương trình dựa vào hàm số Chủ đề 4. Tìm giá trị của tham số để hàm số có cực trị thỏa mãn các yếu tố đặc biệt Chủ đề 5. Tìm giá trị của tham số để 2 hàm số giao nhau thỏa mãn các yếu tố đặc biệt Chủ đề 6. Tìm giá trị của tham số để tiếp tuyến của hàm số thỏa mãn các yếu tố đặc biệt Chương 2. Bài toán vận dụng cao chuyên đề hàm số mũ, logarit Chủ đề 1. Tính số chữ số của một số tự nhiên Chủ đề 2. Các dạng bài toán lãi suất Chủ đề 3. Các dạng toán khác: Hàm số mũ và hàm số logarit còn được áp dụng trong các bài toán tính dân số, tính lượng khí, tính độ pH [ads] Chương 3. Bài toán vận dụng cao nguyên hàm, tích phân Chủ đề 1. Các bài toán nguyên hàm Chủ đề 2. Các bài toán tích phân Chủ đề 3. Ứng dụng tích phân để tính diện tích, thể tích Chủ đề 4. Ứng dụng tích phân giải bài toán vật lý và bài toán thực tế Chương 4. Bài toán vận dụng cao số phức Chủ đề 1. Các bài toán tính toán số phức Chủ đề 2. Phương trình số phức Chủ đề 3. Các bài toán liên quan đến biểu diễn điểm, tập hợp điểm Chương 5. Bài toán vận dụng cao hình học không gian Chủ đề 1. Thể tích khối đa diện Chủ đề 2. Mặt cầu – Khối cầu Chủ đề 3. Mặt nón – Khối nón Chủ đề 4. Mặt trụ – Khối trụ Chủ đề 5. Ứng dụng hình học không gian giải các bài toán thực tế Chương 6. Bài toán vận dụng cao hình học Oxyz Chủ đề 1. Tọa độ của điểm và vectơ trong không gian Chủ đề 2. Mặt phẳng trong không gian Chủ đề 3. Đường thẳng trong không gian Chủ đề 4. Mặt cầu Xem thêm : + Tổng hợp 250 câu hỏi trắc nghiệm vận dụng cao – Nhóm Toán   + Tuyển chọn 152 bài toán vận dụng cao trong các đề thi thử – Nguyễn Văn Rin