Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Viết phương trình mặt cầu

Tài liệu gồm 10 trang được biên soạn bởi tập thể quý thầy, cô giáo Nhóm Word Và Biên Soạn Tài Liệu Môn Toán THPT, hướng dẫn giải bài toán viết phương trình mặt cầu, được phát triển dựa trên câu 33 đề thi minh họa THPT Quốc gia môn Toán năm học 2019 – 2020 do Bộ Giáo dục và Đào tạo công bố. Giới thiệu sơ lược về tài liệu viết phương trình mặt cầu: A. KIẾN THỨC CẦN NẮM 1. Phương trình mặt cầu (S) dạng 1 Để viết phương trình mặt cầu (S), ta cần tìm tâm I(a;b;c) và bán kính R. Khi đó (S) có tâm I(a;b;c) và bán kính R khi và chỉ khi (S): (x – a)^2 + (y – b)^2 + (z – c)^2 = R^2. 2. Phương trình mặt cầu (S) dạng 2 (S): x^2 + y^2 + z^2 – 2ax – 2by – 2cz + d = 0 với a^2 + b^2 + c^2 – d > 0 là phương trình mặt cầu dạng 2 Tâm I(a;b;c) và bán kính: R = √(a^2 + b^2 + c^2 – d) > 0. [ads] B. BÀI TẬP MẪU 1. Bài toán : Trong không gian Oxyz, cho mặt cầu (S) có tâm là điểm I(0;0;-3) và đi qua điểm M(4;0;0). Phương trình của (S) là? 2. Phân tích hướng dẫn giải a. Dạng toán: Đây là dạng toán viết phương trình của mặt cầu. b. Hướng giải: + Bước 1: (S) có tâm I(a;b;c) và bán kính R ⇔ (S): (x – a)^2 + (y – b)^2 + (z – c)^2 = R^2. + Bước 2: R = IM = √[(4 – 0)^2 + (0 – 0)^2 + (0 + 3)^2] = 5. C. BÀI TẬP TƯƠNG TỰ VÀ PHÁT TRIỂN

Nguồn: toanmath.com

Đọc Sách

Bài toán tìm điểm trong không gian
Tài liệu gồm 18 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề bài toán tìm điểm trong không gian, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Hình học chương 3. Dạng 1: Tìm hình chiếu vuông góc của điểm trên đường thẳng hoặc mặt phẳng. Dạng 2: Tìm điểm M thuộc đường thẳng d thỏa mãn điều kiện K cho trước. Dạng 3: Tìm điểm M trên mặt phẳng (P) sao cho MA = MB = MC. Dạng 4: Tìm điểm M trên mặt phẳng (P) sao cho MA = MB và điểm M thỏa mãn điều kiện K cho trước. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Bài toán về phương trình mặt cầu
Tài liệu gồm 27 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề bài toán về phương trình mặt cầu, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Hình học chương 3. Dạng 1: Lập phương trình mặt cầu. Dạng 2: Bài toán mặt cầu tiếp xúc với mặt phẳng. Dạng 3: Bài toán tương giao mặt cầu với mặt phẳng. Dạng 4: Bài toán tương giao mặt cầu với đường thẳng. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Bài toán viết phương trình đường thẳng
Tài liệu gồm 30 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề bài toán viết phương trình đường thẳng, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Hình học chương 3. Dạng 1: Viết phương trình đường thẳng khi biết vectơ chỉ phương. Dạng 2: Viết phương trình đường thẳng khi biết cặp vectơ pháp tuyến. Dạng 3: Lập phương trình đường thẳng d’ qua A cắt d và vuông góc với ∆ (hoặc song song với (P)). Dạng 4: Lập phương trình đường thẳng ∆ cắt d1 và d2 đồng thời song song với d (hoặc vuông góc với (P), hoặc đi qua điểm M). Dạng 5: Viết phương trình đường phân giác của hai đường thẳng. Dạng 6: Viết phương trình đường thẳng liên quan đến góc và khoảng cách. Dạng 7: Viết phương trình đường thẳng vuông góc chung của hai đường thẳng chéo nhau. Dạng 8: Viết phương trình đường thẳng ∆ là hình chiếu vuông góc của d lên mặt phẳng (P). BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Bài toán viết phương trình mặt phẳng
Tài liệu gồm 30 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề bài toán viết phương trình mặt phẳng, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Hình học chương 3. I. LÝ THUYẾT TRỌNG TÂM II. CÁC DẠNG TOÁN TRỌNG TÂM VÀ PHƯƠNG PHÁP GIẢI Dạng 1: Viết phương trình mặt phẳng khi biết vectơ pháp tuyến. Dạng 2: Viết phương trình mặt phẳng liên quan đến khoảng cách. Dạng 3: Phương trình mặt phẳng theo đoạn chắn. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.